Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

CD98 heavy chain (CD98hc), expressed at high levels in developing human trophoblasts, is an integral membrane protein with multiple N-linked glycosylation sites and known to be important for cell fusion, adhesion, and amino acid transport. Western blotting and flow cytometry were used to study the effect of brefeldin A, an inhibitor of protein translocation through the Golgi, on CD98hc in the human placental trophoblast cell line BeWo. Although brefeldin A treatment caused increased cell surface expression of CD98hc, a novel partially glycosylated form of the protein was found and, concomitantly, cell fusion was reduced. Western blotting showed that CD98 and galectin 3, a proposed ligand for the glycosylated extracellular domain of CD98hc, co-immunoprecipitated, and double-label immuno-electron microscopy confirmed that CD98hc associated with galectin 3. Furthermore, cell fusion was reduced (specifically) by the disaccharide lactose, a known ligand for the carbohydrate recognition domain of galectin 3, suggesting that the association was functional. Taken together, the data suggest that N-glycosylation of CD98 and subsequent interaction with galectin 3 is critical for aspects of placental cell biology, and provides a rationale for the observation that, in the mouse, truncation of the CD98hc extracellular domain leads to early embryonic lethality [Tsumura H, Suzuki N, Saito H, Kawano M, Otake S, Kozuka Y, Komada H, Tsurudome M & Ito Y (2003) Biochem Biophys Res Commun 308, 847-851].

Original publication

DOI

10.1111/j.1742-4658.2007.05806.x

Type

Journal article

Journal

FEBS J

Publication Date

06/2007

Volume

274

Pages

2715 - 2727

Keywords

Antigens, CD98, Brefeldin A, Cell Fusion, Cell Line, Colforsin, Galectin 3, Gene Expression, Glycosylation, Humans, Placenta, Protein Transport, Trophoblasts, Tunicamycin