Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Calcium (Ca2+) release-activated Ca2+ (CRAC) channels are a major route for Ca2+ entry in eukaryotic cells. These channels are store operated, opening when the endoplasmic reticulum (ER) is depleted of Ca2+, and are composed of the ER Ca2+ sensor protein STIM and the pore-forming plasma membrane subunit Orai. Recent years have heralded major strides in our understanding of the structure, gating, and function of the channels. Loss-of-function and gain-of-function mutants combined with RNAi knockdown strategies have revealed important roles for the channel in numerous human diseases, making the channel a clinically relevant target. Drugs targeting the channels generally lack specificity or exhibit poor efficacy in animal models. However, the landscape is changing, and CRAC channel blockers are now entering clinical trials. Here, we describe the key molecular and biological features of CRAC channels, consider various diseases associated with aberrant channel activity, and discuss targeting of the channels from a therapeutic perspective.

Original publication

DOI

10.1146/annurev-pharmtox-031620-105135

Type

Journal article

Journal

Annu Rev Pharmacol Toxicol

Publication Date

06/01/2021

Volume

61

Pages

629 - 654

Keywords

Orai, STIM, calcium channel, calcium signaling, store operated