Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Release of the neuromodulator dopamine (DA) is critical to the control of locomotion, motivation, and reward. However, the probability of DA release is not well understood. Current understanding of neurotransmitter release probability in the CNS is limited to the conventional synaptic amino acid transmitters (e.g., glutamate and GABA). These fast neurotransmitters are released with a repertoire of probabilities according to synapse type, and these probabilities show activity-dependent plasticity according to synapse use. Synapses for neuromodulators such as DA, however, are designed for signaling that diverges temporally and spatially from that for fast neurotransmitters: DA receptors are exclusively metabotropic and at sites that extend to extrasynaptic locations and neighboring synapses. In this study, the release probability of DA was explored in real time in limbicversus motor-associated functional domains of the striatum of a primate (marmoset; Callithrix jacchus) using fast-scan voltammetry at a carbon-fiber microelectrode. We show that the probability of axonal DA release varies with striatal domain. Furthermore, release probability exhibits a short-term, activity-dependent plasticity that ranges from depression to facilitation in motor-through limbic-associated regions, respectively. Rapid plasticity does not result from metabotropic D2-like DA receptor activation or ionotropic GABA(A) receptor effects but is dependent on Ca2+ availability. These data reveal that rapid dynamics in DA release probability will participate in the transmission of the patterns and frequencies encoded by DA neuron action potential discharge. Furthermore, the regional variation in these features indicates that limbic-versus motor-associated DA neurons are permitted to generate diverse DA signals in response to a given firing pattern.

Type

Journal article

Journal

J Neurosci

Publication Date

15/05/2003

Volume

23

Pages

4378 - 4385

Keywords

Animals, Basal Ganglia, Bicuculline, Calcium, Callithrix, Corpus Striatum, Dopamine, Dopamine Antagonists, Dopamine D2 Receptor Antagonists, Electric Stimulation, GABA Antagonists, GABA-A Receptor Antagonists, Limbic System, Long-Term Synaptic Depression, Male, Microelectrodes, Motor Cortex, Neuronal Plasticity, Nucleus Accumbens, Presynaptic Terminals, Receptors, Dopamine D2, Receptors, GABA-A, Sulpiride, Synaptic Transmission, gamma-Aminobutyric Acid