Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The information about depth and three-dimensional shape available from the horizontal component of the stereo disparity field requires interpretation in conjunction with information about egocentric viewing distance (D). A novel computational approach for estimating D was proposed by Mayhew and Longuet-Higgins, who demonstrated that the horizontal gradient of vertical disparities uniquely specifies the viewing distance. We have now used random dot stereograms in a shape judgement task to show that changes in vertical disparities have no effect on perceived three-dimensional shape. Changes in ocular convergence do alter perceived shape, suggesting substantial changes in the subjects' scaling of horizontal disparities. We conclude that vertical disparities are not used to scale disparities for viewing distance, and that extraretinal signals must be considered when analysing human three-dimensional shape perception.

Original publication

DOI

10.1038/349411a0

Type

Journal article

Journal

Nature

Publication Date

31/01/1991

Volume

349

Pages

411 - 413

Keywords

Depth Perception, Form Perception, Humans, Visual Perception