Variations of intracellular pH in human erythrocytes via K(+)(Na(+))/H(+) exchange under low ionic strength conditions.
Kummerow D., Hamann J., Browning JA., Wilkins R., Ellory JC., Bernhardt I.
The change of intracellular pH of erythrocytes under different experimental conditions was investigated using the pH-sensitive fluorescent dye BCECF and correlated with (ouabain + bumetanide + EGTA)-insensitive K(+) efflux and Cl(-) loss. When human erythrocytes were suspended in a physiological NaCl solution (pH(o) = 7.4), the measured pH(i) was 7.19 + or - 0.04 and remained constant for 30 min. When erythrocytes were transferred into a low ionic strength (LIS) solution, an immediate alkalinization increased the pH(i) to 7.70 + or - 0.15, which was followed by a slower cell acidification. The alkalinization of cells in LIS media was ascribed to a band 3 mediated effect since a rapid loss of approximately 80% of intracellular Cl(-) content was observed, which was sensitive to known anion transport inhibitors. In the case of cellular acidification, a comparison of the calculated H(+) influx with the measured unidirectional K(+) efflux at different extracellular ionic strengths showed a correlation with a nearly 1:1 stoichiometry. Both fluxes were enhanced by decreasing the ionic strength of the solution resulting in a H(+) influx and a K(+) efflux in LIS solution of 108.2 + or - 20.4 mmol (l(cells) hr)(-1) and 98.7 + or - 19.3 mmol (l(cells) hr)(-1), respectively. For bovine and porcine erythrocytes, in LIS media, H(+) influx and K(+) efflux were of comparable magnitude, but only about 10% of the fluxes observed in human erythrocytes under LIS conditions. Quinacrine, a known inhibitor of the mitochondrial K(+)(Na(+))/H(+) exchanger, inhibited the K(+) efflux in LIS solution by about 80%. Our results provide evidence for the existence of a K(+)(Na(+))/H(+) exchanger in the human erythrocyte membrane.