Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Splice-modulation therapy, whereby molecular manipulation of premessenger RNA splicing is engineered to yield genetic correction, is a promising novel therapy for genetic diseases of muscle and nerve-the prototypical example being Duchenne muscular dystrophy. Duchenne muscular dystrophy is the most common childhood genetic disease, affecting one in 3500 newborn boys, causing progressive muscle weakness, heart and respiratory failure and premature death. No cure exists for this disease and a number of promising new molecular therapies are being intensively studied. Duchenne muscular dystrophy arises due to mutations that disrupt the open-reading-frame in the DMD gene leading to the absence of the essential muscle protein dystrophin. Of all novel molecular interventions currently being investigated for Duchenne muscular dystrophy, perhaps the most promising method aiming to restore dystrophin expression to diseased cells is known as 'exon skipping' or splice-modulation, whereby antisense oligonucleotides eliminate the deleterious effects of DMD mutations by modulating dystrophin pre-messenger RNA splicing, such that functional dystrophin protein is produced. Recently this method was shown to be promising and safe in clinical trials both in The Netherlands and the UK. These trials studied direct antisense oligonucleotide injections into single peripheral lower limb muscles, whereas a viable therapy will need antisense oligonucleotides to be delivered systemically to all muscles, most critically to the heart, and ultimately to all other affected tissues including brain. There has also been considerable progress in understanding how such splice-correction methods could be applied to the treatment of related neuromuscular diseases, including spinal muscular atrophy and myotonic dystrophy, where defects of splicing or alternative splicing are closely related to the disease mechanism.

Original publication

DOI

10.1093/brain/awq002

Type

Journal article

Journal

Brain

Publication Date

04/2010

Volume

133

Pages

957 - 972

Keywords

Animals, Gene Targeting, Genetic Therapy, Humans, Male, Muscular Dystrophy, Duchenne, Neuromuscular Diseases, RNA, RNA Splicing