Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mammalian sleep emerges from attenuated activity in the ascending reticular arousal system (ARAS), the main arousal network of the brain. This system originates in the brainstem and activates the thalamus and cortex during wakefulness via a well-characterized 'bottom-up' pathway. Recent studies propose that a less investigated cortico-thalamic 'top-down' pathway also regulates sleep. The present work integrates the current evidence on sleep regulation with a focus on the 'top-down' pathway and explores the potential to translate this information into clinically relevant interventions. Specifically, we elaborate the concept that arousal and sleep continuity in humans can be modulated by non-invasive brain stimulation (NIBS) techniques that increase or decrease cortical excitability. Based on preclinical studies, the modulatory effects of the stimulation are thought to extend to subcortical arousal networks. Further exploration of the 'top-down' regulation of sleep and its modulation through non-invasive brain stimulation techniques may contribute to the development of novel treatments for clinical conditions of disrupted arousal and sleep, which are among the major health problems worldwide.

Original publication




Journal article


Sleep Med Rev

Publication Date





17 - 24


Arousal, Brain stimulation, Cortex, Cortico-thalamic feedback, Sleep, Sleep continuity, Thalamus, Transcranial direct current stimulation, Animals, Arousal, Brain, Cerebral Cortex, Electroencephalography, Humans, Sleep, Thalamus, Transcranial Direct Current Stimulation