Sleep homeostasis reflects temporally integrated local cortical neuronal activity
Thomas CW., Guillaumin MCC., McKillop LE., Achermann P., Vyazovskiy VV.
AbstractThe homeostatic regulation of sleep manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions of this phenomenon define “Process S”, a variable with dynamics dependent only on sleep-wake history, whose levels are reflected in electroencephalogram (EEG) slow wave activity (0.5 – 4 Hz) during sleep. Here we developed novel mathematical models of Process S in mice, assuming that its dynamics are a function of the deviation of cortical neuronal firing rates from a locally defined set-point, crucially without explicit knowledge of sleep-wake state. Our results suggest that Process S tracks global sleep-wake history through an integration of local cortical neuronal activity levels over time. We posit that, instead of reflecting sleep-wake-dependent changes in specific variables and serving their homeostatic regulation, Process S may be a time-keeping mechanism which enables individuals to obtain a species-specific and ecologically-relevant quantity of sleep, even in the absence of external temporal information.