Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

During cardiac development, cardiomyocytes form complex inner wall structures called trabeculae. Despite significant investigation into this process, the potential role of metabolism has not been addressed. Using single cell resolution imaging in zebrafish, we find that cardiomyocytes seeding the trabecular layer actively change their shape while compact layer cardiomyocytes remain static. We show that Erbb2 signaling, which is required for trabeculation, activates glycolysis to support changes in cardiomyocyte shape and behavior. Pharmacological inhibition of glycolysis impairs cardiac trabeculation, and cardiomyocyte-specific loss- and gain-of-function manipulations of glycolysis decrease and increase trabeculation, respectively. In addition, loss of the glycolytic enzyme pyruvate kinase M2 impairs trabeculation. Experiments with rat neonatal cardiomyocytes in culture further support these observations. Our findings reveal new roles for glycolysis in regulating cardiomyocyte behavior during cardiac wall morphogenesis.

Original publication

DOI

10.7554/eLife.50161

Type

Journal article

Journal

Elife

Publication Date

23/12/2019

Volume

8

Keywords

cardiomyocytes, cell biology, developmental biology, glycolysis, heart development, metabolism, trabeculation, zebrafish, Animals, Animals, Genetically Modified, Cell Proliferation, Gene Expression Regulation, Developmental, Genes, erbB-2, Glycolysis, Heart, Models, Animal, Morphogenesis, Myocytes, Cardiac, Organogenesis, Rats, Signal Transduction, Zebrafish, Zebrafish Proteins