Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent advances in high performance computing combined with increasing knowledge of the kinetics of biochemical reactions and transport processes have allowed us to develop mathematical models that describe various aspects of cardiac physiology. These models include both single cell and three-dimensional tissue models that simulate important features of cardiac electrophysiology, mechanics, and metabolism. We have begun to couple these models with the goal of creating a fully integrated cardiac model that can describe the pathophysiology of the ischaemic heart. Here we present an outline of this work.

Original publication




Conference paper

Publication Date





235 - 244