Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mutations in protein kinase Cgamma (PKCgamma) cause the neurodegenerative disease spinocerebellar ataxia type 14 (SCA14). In this study, expression of an extensive panel of known SCA14-associated PKCgamma mutations as fusion proteins in cell culture led to the consistent formation of cytoplasmic aggregates in response to purinoceptor stimulation. Aggregates co-stained with antibodies to phosphorylated PKCgamma and the early endosome marker EEA1 but failed to redistribute to the cell membrane under conditions of oxidative stress. These studies suggest that Purkinje cell damage in SCA14 may result from a reduction of PKCgamma activity due its aberrant sequestration in the early endosome compartment.

Original publication




Journal article


Biochem Biophys Res Commun

Publication Date





447 - 453


Animals, Cell Line, Endosomes, Fluorescent Antibody Technique, Humans, Mutation, Oxidative Stress, Protein Kinase C, Purkinje Cells, Spinocerebellar Ataxias, Vesicular Transport Proteins