Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND PURPOSE: Intracellular pH (pH(i)) in heart is regulated by sarcolemmal H(+)-equivalent transporters such as Na(+)-H(+) exchange (NHE) and Na(+)-HCO(3) (-) cotransport (NBC). Inhibition of NBC influences pH(i) and can be cardioprotective in animal models of post-ischaemic reperfusion. Apart from a rabbit polyclonal NBC-antibody, a selective NBC inhibitor compound has not been studied. Compound S0859 (C(29)H(24)ClN(3)O(3)S) is a putative NBC inhibitor. Here, we provide the drug's chemical structure, test its potency and selectivity in ventricular cells and assess its suitability for experiments on cardiac contraction. EXPERIMENTAL APPROACH: pH(i) recovery from intracellular acidosis was monitored using pH-epifluorescence (SNARF-fluorophore) in guinea pig, rat and rabbit isolated ventricular myocytes. Electrically evoked cell shortening (contraction) was measured optically. With CO(2)/HCO(3) (-)-buffered superfusates containing 30 muM cariporide (to inhibit NHE), pH(i) recovery is mediated by NBC. KEY RESULTS: S0859, an N-cyanosulphonamide compound, reversibly inhibited NBC-mediated pH(i) recovery (K (i)=1.7 microM, full inhibition at approximately 30 microM). In HEPES-buffered superfusates, NHE-mediated pH(i) recovery was unaffected by 30 microM S0859. With CO(2)/HCO(3) (-) buffer, pH(i) recovery from intracellular alkalosis (mediated by Cl(-)/HCO(3) (-) and Cl(-)/OH(-) exchange) was also unaffected. Selective NBC-inhibition was not due to action on carbonic anhydrase (CA) enzymes, as 100 microM acetazolamide (a membrane-permeant CA-inhibitor) had no significant effect on NBC activity. pH(i) recovery from acidosis was associated with increased contractile-amplitude. The time course of recovery of pH(i) and contraction was slowed by S0859, confirming that NBC is a significant controller of contractility during acidosis. CONCLUSIONS AND IMPLICATIONS: Compound S0859 is a selective, high-affinity generic NBC inhibitor, potentially important for probing the transporter's functional role in heart and other tissues.

Original publication




Journal article


Br J Pharmacol

Publication Date





972 - 982


Acidosis, Animals, Benzamides, Benzopyrans, Biological Transport, Carbonic Anhydrases, Electric Stimulation, Guinea Pigs, Heart Ventricles, Hydrogen-Ion Concentration, In Vitro Techniques, Myocardial Contraction, Myocytes, Cardiac, Naphthols, Rabbits, Rats, Rats, Sprague-Dawley, Rhodamines, Sodium-Bicarbonate Symporters, Sulfonamides