Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Store-operated Ca2+ entry through CRAC channels is a major route for Ca2+ influx in non-excitable cells. Studies on store-operated channel selectivity using fluorescent dyes have found that the channels are impermeable to Ba2+. Furthermore, in such studies, agonists have been reported to increase Ba2+ influx, leading to the conclusion that additional Ca2+ entry pathways (permeable to Ba2+) co-exist with the Ba2+-impermeable store-operated channels. However, patch clamp experiments demonstrate that CRAC channels are permeable to Ba2+. We have addressed this paradox using fluorescence measurements and whole cell patch clamp recordings of ICRAC. In store-depleted cells loaded with fura 2, Ba2+ application results in a slower and smaller rise in fluorescence than is the case with Ca2+. Ba2+, unlike Ca2+, depolarises the membrane potential by approximately 40 mV, due to rapid block of an inwardly rectifying K+ current. Although Ba2+ permeates CRAC channels at very negative potentials in patch clamp recordings, Ba2+ permeation is steeply voltage-dependent. This combination of Ba2+-dependent depolarisation and voltage-dependent Ba2+ permeation accounts for the apparent lack of Ba2+ permeation through store-operated channels seen in fluorescence experiments. Our findings identify major limitations with the use of Ba2+ as a surrogate for Ca2+ in probing Ca2+ entry pathways and raise the possibility that some of the previous reports proposing multiple Ca2+ entry pathways based on Ba2+ entry into fura 2-loaded cells could be explained by voltage-dependent Ba2+ permeation through CRAC channels.

Original publication




Journal article


Cell Calcium

Publication Date





333 - 339


Animals, Barium, Calcium, Calcium Channels, Cell Line, Fluorescent Dyes, Fura-2, Ion Channel Gating, Membrane Potentials, Patch-Clamp Techniques, Potassium Channels