Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© COPYRIGHT SPIE. The multi-billion dollar Earth observation applications market continues to demand better spatial and temporal resolution; simply put, this means bigger apertures and more satellites. This paper describes a novel deployable telescope that addresses the market needs for a <1m GSD imager in a small launch volume. This system will allow many identical satellites to be launched into a constellation from a single launch vehicle, providing a low-cost solution to rapid-revisit high resolution imaging requirements. Alternatively, two or three satellites could be launched in a dedicated small satellite launch vehicle, where previously only one would have fit. Surrey Satellite Technology Ltd. (SSTL) has already demonstrated low-cost 1m GSD imagery from the Carbonite-2 platform, but the deployable telescope solution presented here provides the opportunity to build on this capability by significantly improving revisit time, without the typical increase in cost. SSTL is developing, alongside the Surrey Space Centre (SSC) and the Dynamic Optics and Photonics Group at the University of Oxford, a telescopic deployable structure and a fine alignment system to align the Cassegrain-type telescope in-orbit. The three-concentric barrel deployable structure and mechanisms are discussed including the associated requirements and trade-off study that led to this design. The dynamic nature of this system exacerbates traditional optical challenges such as alignment and stray light control; solutions to these are proposed, the optical design rationale is explained and predicted imaging performance shown. The novel autonomous fine alignment system, both algorithms and mechanisms, is presented. The last section deals with the spacecraft level implications and accommodation. Then finally the constellation level system design is shown with regards to the launch vehicle options and orbit configuration for coverage optimization; both global and target-specific.

Original publication

DOI

10.1117/12.2535928

Type

Conference paper

Publication Date

01/01/2018

Volume

11180