Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Sarcomere length (SL) is an important determinant and indicator of cardiac mechanical function; however, techniques for measuring SL in living, intact tissue are limited. Here, we present a technique that uses two-photon microscopy to directly image striations of living cells in cardioplegic conditions, both in situ (Langendorff-perfused rat hearts and ventricular tissue slices, stained with the fluorescent marker di-4-ANEPPS) and in vitro (acutely isolated rat ventricular myocytes). Software was developed to extract SL from two-photon fluorescence image sets while accounting for measurement errors associated with motion artifact in raster-scanned images and uncertainty of the cell angle relative to the imaging plane. Monte-Carlo simulations were used to guide analysis of SL measurements by determining error bounds as a function of measurement path length. The mode of the distribution of SL measurements in resting Langendorff-perfused heart is 1.95 mum (n = 167 measurements from N = 11 hearts) after correction for tissue orientation, which was significantly greater than that in isolated cells (1.71 mum, n = 346, N = 9 isolations) or ventricular slice preparations (1.79 mum, n = 79, N = 3 hearts) under our experimental conditions. Furthermore, we find that edema in arrested Langendorff-perfused heart is associated with a mean SL increase; this occurs as a function of time ex vivo and correlates with tissue volume changes determined by magnetic resonance imaging. Our results highlight that the proposed method can be used to monitor SL in living cells and that different experimental models from the same species may display significantly different SL values under otherwise comparable conditions, which has implications for experiment design, as well as comparison and interpretation of data.

Original publication

DOI

10.1152/ajpheart.00481.2009

Type

Journal article

Journal

Am J Physiol Heart Circ Physiol

Publication Date

05/2010

Volume

298

Pages

H1616 - H1625

Keywords

Algorithms, Animals, Cell Separation, Edema, Fluorescent Dyes, Heart Arrest, Induced, Image Processing, Computer-Assisted, In Vitro Techniques, Magnetic Resonance Imaging, Microscopy, Fluorescence, Monte Carlo Method, Myocardial Contraction, Myocytes, Cardiac, Pyridinium Compounds, Rats, Rats, Sprague-Dawley, Sarcomeres