Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

NMDA receptors (NMDARs) are involved in synaptic transmission and synaptic plasticity in different brain regions, and they modulate glutamate release at different presynaptic sites. Here, we studied whether non-postsynaptic NMDARs, putatively presynaptic (preNMDARs), are tonically active at hippocampal CA3-CA1 synapses, and if they modulate glutamate release. We found that when postsynaptic NMDARs are blocked by MK801, D-AP5 depresses evoked and spontaneous excitatory synaptic transmission, indicating that preNMDARs are tonically active at CA3-CA1 synapses, facilitating glutamate release. The subunit composition of these NMDARs was determined by studying evoked and spontaneous excitatory synaptic transmission in the presence of Zn2+, Ro 25-6981, and PPDA, antagonists of NMDARs containing GluN2A, GluN2B, and GluN2C/D, respectively. We found that evoked and spontaneous release decreased when the activity of NMDARs containing GluN2B and GluN2C/D subunits but not GluN2A was impeded. In addition, we found that the increase in glutamate release mediated by these NMDARs requires protein kinase A (PKA) activation. We conclude that preNMDARs that contain GluN2B and GluN2C/2D subunits facilitate glutamate release at hippocampal CA3-CA1 synapses through a mechanism that involves PKA.

Original publication

DOI

10.1007/s12035-018-1187-5

Type

Journal article

Journal

Mol Neurobiol

Publication Date

03/2019

Volume

56

Pages

1694 - 1706

Keywords

Glutamate release, NMDA receptor, Presynaptic, Protein kinase A, Subunit composition, Tonic activation, Animals, Excitatory Postsynaptic Potentials, Glutamic Acid, Hippocampus, Mice, Patch-Clamp Techniques, Protein Subunits, Receptors, N-Methyl-D-Aspartate, Synapses, Synaptic Transmission