Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. We tested the hypothesis that nitric oxide (NO) augments vagal neurotransmission and bradycardia via phosphorylation of presynaptic calcium channels to increase vesicular release of acetylcholine. 2. The effects of enzyme inhibitors and calcium channel blockers on the actions of the NO donor sodium nitroprusside (SNP) were evaluated in isolated guinea-pig atrial-right vagal nerve preparations. 3. SNP (10 microM) augmented the heart rate response to vagal nerve stimulation but not to the acetylcholine analogue carbamylcholine (100 nM). SNP also increased the release of [3H]acetylcholine in response to field stimulation. No effect of SNP was observed on either the release of [3H] acetylcholine or the HR response to vagal nerve stimulation in the presence of the guanylyl cyclase inhibitor 1H-(1,2,4)-oxadiazolo-(4,3-a)-quinoxalin-1-one (ODQ, 10 microM). 4. The phosphodiesterase 3 (PDE 3) inhibitor milrinone (1 microM) increased the release of [3H] acetylcholine and the vagal bradycardia and prevented any further increase by SNP. SNP was still able to augment the vagal bradycardia in the presence of the protein kinase G inhibitor KT5823 (1 microM) but not after protein kinase A (PKA) inhibition with H-89 (0.5 microM) or KT5720 (1 microM) had reduced the HR response to vagal nerve stimulation. Neither milrinone nor H-89 changed the HR response to carbamylcholine. 5. SNP had no effect on the magnitude of the vagal bradycardia after inhibition of N-type calcium channels with omega-conotoxin GVIA (100 nM). 6. These results suggests that NO acts presynaptically to facilitate vagal neurotransmission via a cGMP-PDE 3-dependent pathway leading to an increase in cAMP-PKA-dependent phosphorylation of presynaptic N-type calcium channels. This pathway may augment the HR response to vagal nerve stimulation by increasing presynaptic calcium influx and vesicular release of acetylcholine.

Original publication




Journal article


J Physiol

Publication Date





507 - 518


Acetylcholine, Alkaloids, Animals, Bradycardia, Calcium Channel Blockers, Calcium Channels, Carbachol, Carbazoles, Cardiotonic Agents, Cyclic AMP-Dependent Protein Kinases, Cyclic GMP, Electric Stimulation, Enzyme Inhibitors, Female, Guanylate Cyclase, Guinea Pigs, Heart Rate, In Vitro Techniques, Indoles, Isoquinolines, Milrinone, Nitric Oxide, Nitric Oxide Donors, Nitroprusside, Oxadiazoles, Phosphorylation, Presynaptic Terminals, Quinoxalines, Sinoatrial Node, Sulfonamides, Synaptic Transmission, Tritium, Vagus Nerve, omega-Conotoxin GVIA