Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: The role of the nitric oxide (NO)-cGMP pathway in the autonomic modulation of cardiac pacemaking is controversial and may involve an interplay between the L-type calcium current, I(CaL), and the hyperpolarisation activated current, I(f). We tested the hypothesis that following adrenergic stimulation, the NO-cGMP pathway stimulates phosphodiesterase 2 (PDE2) to reduce cAMP dependent stimulation of I(f) and heart rate (HR). METHODS: In the presence of norepinephrine (NE, 1 microM), the effects of the NO donor sodium nitroprusside (SNP) were evaluated in sinoatrial node (SAN)/atria preparations and isolated SAN cells from adult guinea pigs. RESULTS: Contrary to our hypothesis, SNP (10 and 100 microM, n=5) or the membrane permeable cGMP analogue, 8Br-cGMP (0.5 mM, n=6) transiently increased HR by 5+/-1, 12+/-1 and 12+/-2 beats/min, respectively. The guanylyl cyclase inhibitor 1H-(1,2,4)-oxadiazolo-(4,3-a)-quinoxalin-1-one (ODQ, 10 microM, n=5) abolished the increase in HR to SNP (100 microM) as did the I(f) blockers caesium chloride (2 mM, n=7) and 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino)-pyrimidinium chloride (ZD7288, 1 microM, n=7). Addition of SNP (10 microM) also transiently increased I(f) in SAN cells (n=5). After inhibition of PDE2 with erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA, 10 microM, n=5), the increase in HR to SNP in the presence of NE was significantly augmented and maintained. RT-PCR analysis confirmed the presence of PDE2 in addition to cGMP inhibited PDE3 mRNA in central SAN tissue. CONCLUSIONS: These results suggest that during adrenergic stimulation, activation of the NO-cGMP pathway does not decrease HR, but has a transient stimulatory effect that is I(f) dependent, and is limited in magnitude and duration by stimulation of PDE2.

Type

Journal article

Journal

Cardiovasc Res

Publication Date

12/2001

Volume

52

Pages

446 - 453

Keywords

3',5'-Cyclic-AMP Phosphodiesterases, 8-Bromo Cyclic Adenosine Monophosphate, Adenine, Animals, Calcium Channel Blockers, Cesium, Chlorides, Cyclic GMP, Cyclic Nucleotide Phosphodiesterases, Type 2, Female, Guanylate Cyclase, Guinea Pigs, Heart Rate, Ion Channels, Nitric Oxide, Nitric Oxide Donors, Nitroprusside, Norepinephrine, Patch-Clamp Techniques, Phosphodiesterase Inhibitors, Phosphoric Diester Hydrolases, Pyrimidines, RNA, Messenger, Reverse Transcriptase Polymerase Chain Reaction, Sinoatrial Node, Stimulation, Chemical