Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Flash-frozen myocardium samples provide a valuable means of correlating clinical cardiomyopathies with abnormalities in sarcomeric contractile and biochemical parameters. We examined flash-frozen left-ventricle human cardiomyocyte bundles from healthy donors to determine control parameters for isometric tension (P(o)) development and Ca(2+) sensitivity, while simultaneously measuring actomyosin ATPase activity in situ by a fluorimetric technique. P(o) was 17 kN m(-2) and pCa(50%) was 5.99 (28 degrees C, I = 130 mM). ATPase activity increased linearly with tension to 132 muM s(-1). To determine the influence of flash-freezing, we compared the same parameters in both glycerinated and flash-frozen porcine left-ventricle trabeculae. P(o) in glycerinated porcine myocardium was 25 kN m(-2), and maximum ATPase activity was 183 microM s(-1). In flash-frozen porcine myocardium, P(o) was 16 kN m(-2) and maximum ATPase activity was 207 microM s(-1). pCa(50%) was 5.77 in the glycerinated and 5.83 in the flash-frozen sample. Both passive and active stiffness of flash-frozen porcine myocardium were lower than for glycerinated tissue and similar to the human samples. Although lower stiffness and isometric tension development may indicate flash-freezing impairment of axial force transmission, we cannot exclude variability between samples as the cause. ATPase activity and pCa(50%) were unaffected by flash-freezing. The lower ATPase activity measured in human tissue suggests a slower actomyosin turnover by the contractile proteins.

Original publication

DOI

10.1016/j.bpj.2009.07.058

Type

Journal article

Journal

Biophys J

Publication Date

04/11/2009

Volume

97

Pages

2503 - 2512

Keywords

Actomyosin, Adenosine Triphosphatases, Adenosine Triphosphate, Animals, Biophysics, Calcium, Fluorometry, Glycerol, Humans, Hydrogen-Ion Concentration, Microscopy, Atomic Force, Myocardial Contraction, Myocardium, Myosins, Swine