Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Natural polymers collagen, glycosaminoglycans, and elastin are promising candidate materials for heart valve tissue engineering scaffolds. This work produced trilayer scaffolds that resembled the layered structures of the extracellular matrices of native heart valves. The scaffolds showed anisotropic bending moduli (in both dry and hydrated statuses) depending on the loading directions (lower in the With Curvature direction than in the Against Curvature direction), which mimicked the characteristic behavior of the native heart valves. The interactions between cardiosphere-derived cells and the scaffolds were characterized by multiphoton microscopy, and relatively similar cell distributions were observed on different layers (a cell density of 3,000-4,000 mm-3 and a migration depth of 0.3-0.4 mm). The trilayer scaffold has represented a forwarding step from the previous studies, in attempting to better replicate a native heart valve structurally, mechanically, and biologically.

Original publication

DOI

10.1002/jbm.b.34427

Type

Journal article

Journal

J Biomed Mater Res B Appl Biomater

Publication Date

04/2020

Volume

108

Pages

729 - 737

Keywords

bending anisotropy, cardiosphere-derived cells, heart valve, tissue engineering