Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The claustrum is thought to be one of the most highly interconnected forebrain structures, but its organizing principles have yet to be fully explored at the level of single neurons. Here, we investigated the identity, connectivity, and activity of identified claustrum neurons in Mus musculus to understand how the structure's unique convergence of input and divergence of output support binding information streams. We found that neurons in the claustrum communicate with each other across efferent projection-defined modules which were differentially innervated by sensory and frontal cortical areas. Individual claustrum neurons were responsive to inputs from more than one cortical region in a cell-type and projection-specific manner, particularly between areas of frontal cortex. In vivo imaging of claustrum axons revealed responses to both unimodal and multimodal sensory stimuli. Finally, chronic claustrum silencing specifically reduced animals' sensitivity to multimodal stimuli. These findings support the view that the claustrum is a fundamentally integrative structure, consolidating information from around the cortex and redistributing it following local computations.

Original publication

DOI

10.7554/eLife.98002

Type

Journal article

Journal

Elife

Publication Date

16/07/2025

Volume

13

Keywords

claustrum, connectivity, cortex, mouse, neuroscience, Animals, Mice, Claustrum, Neurons, Nerve Net, Neural Pathways, Male