Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Traditional analgesic opioid compounds, which act through μ opioid receptors (MORs), engender a high risk for misuse and dependence. κ opioid receptor (KOR) activation, a potential target for pain treatment, produces antinociception without euphoric side effects but results in dysphoria and aversion. Triazole 1.1 is a KOR agonist biased toward G-protein coupled signaling, potentially promoting antinociception without dysphoria. We tested whether triazole 1.1 could provide antinociception and its effects in combination with morphine. We employed a lactic acid abdominal pain model, which induced acute pain behaviors, decreased basal dopamine levels in the nucleus accumbens (NAc), and increased KOR function. We administered several interventions including triazole 1.1 (30 mg/kg) and morphine (12 or 24 mg/kg), individually and in combination. Triazole 1.1 alone reduced the pain behavioral response and changes to KOR function but did not prevent the reduction in basal dopamine levels. Morphine not only dose-dependently prevented behavioral pain responses but also elevated NAc dopamine and did not prevent the pain-induced increase in KOR function. However, combining low-dose morphine with triazole 1.1 prevents behavioral pain responses, changes to NAc dopamine levels, and changes to KOR function. Therefore, we present triazole 1.1 as a dose-sparing pain treatment to be used in combination with a lower dose of morphine, thus reducing the potential for opioid misuse.

Original publication

DOI

10.1021/acschemneuro.5c00075

Type

Journal article

Journal

ACS Chem Neurosci

Publication Date

25/03/2025

Keywords

antinociception, dopamine, kappa opioid receptor, morphine, nucleus accumbens, triazole 1.1