Using fast-scan cyclic voltammetry to investigate somatodendritic dopamine release
Threlfell S., Cragg SJ.
Midbrain dopamine (DA) neurons of the substantia nigra (SN, “A9”) and adjacent ventral tegmental area (VTA, “A10”) are critical to a range of CNS functions, including motor facilitation by the basal ganglia and the regulation of motivation by natural rewards as well as by drugs of addiction. A characteristic shared by DA cells in the SN and VTA is that they release DA locally from somatodendritic regions1-4 as well as from their axonal projections. There is evidence for release from soma5 as well as from dendrites.2,6 Somatodendritic release of neurotransmitter is not restricted to DA neurons; rather, neurons found throughout the brain can signal via the somatodendritic release of neurotransmitters, including GABA and glutamate as well as neuropeptides.7,8 Somatodendritic neurotransmission operates both at a synaptic level and by more paracrine/autocrine- like modes to offer neuronal cross-talk as well as self- or auto-feedback control.7,8 This chapter will focus specifically on the somatodendritic release of DA within the midbrain and how voltammetric methods, particularly fast-scan cyclic voltammetry (FCV), have been used to explore its characteristics.