Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In a competitive game involving an animal and an opponent, the outcome is contingent on the choices of both players. To succeed, the animal must continually adapt to competitive pressure, or else risk being exploited and lose out on rewards. In this study, we demonstrate that head-fixed male mice can be trained to play the iterative competitive game "matching pennies" against a virtual computer opponent. We find that the animals' performance is well described by a hybrid computational model that includes Q-learning and choice kernels. Comparing between matching pennies and a non-competitive two-armed bandit task, we show that the tasks encourage animals to operate at different regimes of reinforcement learning. To understand the involvement of neuromodulatory mechanisms, we measure fluctuations in pupil size and use multiple linear regression to relate the trial-by-trial transient pupil responses to decision-related variables. The analysis reveals that pupil responses are modulated by observable variables, including choice and outcome, as well as latent variables for value updating, but not action selection. Collectively, these results establish a paradigm for studying competitive decision-making in head-fixed mice and provide insights into the role of arousal-linked neuromodulation in the decision process.

Original publication

DOI

10.1523/ENEURO.0457-21.2022

Type

Journal article

Journal

eNeuro

Publication Date

2022

Volume

9

Keywords

action selection, arousal, decision-making, decisions, mouse, value, Animals, Decision Making, Learning, Male, Mice, Pupil, Reinforcement, Psychology, Reward