Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Familial hypercholesterolemia (FH) is a condition caused by mutations in the low-density lipoprotein receptor (LDLR) gene. Expression of LDLR is highly regulated and excess receptor expression is cytotoxic. To incorporate essential gene regulation into a gene therapy vector for FH, we generated vectors in which the expression of therapeutic human LDLR gene, or luciferase reporter gene, is driven by 10 kb of human LDLR genomic DNA encompassing the promoter region including elements essential for physiologically regulated expression. Using luciferase expression and specific LDL binding and internalization assays, we have shown in vitro that the genomic promoter element confers long-term, physiologically regulated gene expression and complementation of receptor deficiency in culture for 240 cell-generations. This was demonstrated in the presence of sterols or statins, modifiers of LDLR promoter activity. In vivo, we demonstrate efficient liver-specific delivery and expression of luciferase following hydrodynamic tail-vein injection and confirm that expression from the LDLR promoter element is sensitive to statin administration. We also demonstrate long-term LDLR expression from the 10-kb promoter element up to 9 months following delivery. The vector system that we describe provides the efficient delivery, long-term expression, and physiological regulation required for a successful gene therapy intervention for FH.

Original publication

DOI

10.1038/mt.2009.249

Type

Journal article

Journal

Mol Ther

Publication Date

02/2010

Volume

18

Pages

317 - 326

Keywords

Animals, CHO Cells, Cricetinae, Cricetulus, Female, Gene Expression, Genetic Therapy, Genetic Vectors, Humans, Hyperlipoproteinemia Type II, Liver, Mice, Models, Genetic, Receptors, LDL, Sterols