Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

An in-depth look into a collaborative DPAG, Chemistry and Oxford Martin School project pioneering a radical new approach in which the brain is repaired with 3D-printed neural tissues.

None

Interviewees

Project Collaborators

Hagan Bayley

Professor of Chemical Biology

HaganBayleyheadshot2.jpg

Linna Zhou

Oxford Martin Fellow

LinnaZhouheadshot.jpg

Funder

oxfordmartinschool.png

 

Related Images

Image shows Day 13, GFAP Tuj1 vGlut1 at top, image below of brain progenitor cells differentiating into neurons and astrocytes 13 days after 3D printing.

Human brain progenitor cells differentiate into neurons and astrocytes 13 days after 3D printing.

Adapted from Zhou et al., Advanced Materials, June 2020

cortexofmutantmouse.jpg

Layer 6 (green) and layer 5 (red) of the cortex of a Pax 6 mutant mouse cerebral cortex.

Adapted from Tuoc et al., Journal of Neuroscience, July 2009

chickbrain.png

Clonally-related cells labelled in a chick brai.

Adapted from García-Moreno et al., Development, April 2014

Related Publications

greyline.PNG

Lipid‐Bilayer‐Supported 3D Printing of Human Cerebral Cortex Cells Reveals Developmental Interactions

journalarticlegraphiccropped.PNG

Bayley H. et al, (2020), Advanced Materials

greyline.PNG

A Tissue-Like Printed Material

journalarticlegraphiccropped.PNG

Bayley H. et al, (2013), Science, 340, 6128, 48-52
 

Similar stories

Reducing fat in the diabetic heart could improve recovery from heart attack

New research from the Heather Group has shown that in type 2 diabetes an overload of lipids reduces the heart’s ability to generate energy during a heart attack, decreasing chances of recovery.

The brain’s one-sided teaching signals

A new study by the Lak group reveals a novel facet of dopamine signalling during visual decision making.

Fellowship awarded to Huriye Atilgan to enhance our understanding of value-based decision-making

Congratulations are in order for Postdoctoral Research Scientist Dr Huriye Atilgan who has been awarded a prestigious Sir Henry Wellcome Postdoctoral Fellowship funded by the Wellcome Trust.

The future of stroke treatment

A team of international collaborators including DPAG's Dr Mootaz Salman has been researching a promising new therapeutic for the treatment of strokes and other brain injuries.

New review reveals proof of concept for an anti-obesity immunotherapy

The Domingos lab has published a new opinion piece in Science investigating the implications of a Memorial Sloan Kettering Cancer Center study that lays the foundations for a potential new anti-obesity treatment in the form of targeting adipose tissue-resident macrophages.

New pathway established for multisensory cortical communication

Integration of information across the senses is critical for perception. This activity is thought to arise primarily from connections made in the brain's sensory cortical areas. A new paper from the King Group uncovers evidence for the first time on the little understood role of subcortical circuits in shaping the multisensory properties of primary cortical neurons.

Iron deficiency anaemia in early pregnancy increases risk of heart defects, suggests new research

In animal models, iron deficient mothers have a greatly increased risk of having offspring with congenital heart disease (CHD). The risk of CHD can be greatly reduced if the mother is given iron supplements very early in pregnancy. Additionally, embryos from a mouse model of Down Syndrome were particularly vulnerable to the effects of maternal iron deficiency, leading to a higher risk of developing severe heart defects.

New target to develop immunosuppressants

A new study from the Parekh Group has resolved a long-standing question in our understanding of intracellular Ca2+ signalling, namely how a specific type of Ca2+ channel is uniquely able to signal to the nucleus to regulate gene expression. By unravelling this mechanism, researchers have identified a new approach for developing immunosuppressant drugs.

How the kidney contributes to healthy iron levels and disease

A new study from the Lakhal-Littleton Group has addressed a long-standing gap in our understanding of systemic iron homeostasis. It provides the first formal demonstration that the hormone hepcidin controls iron reabsorption in the kidney, in a manner that impacts the body’s iron levels, under normal physiological conditions. It also demonstrates for the first time how this mechanism becomes critically important in the development of iron disorders.

New research to radically alter our understanding of synaptic development

A new study from the Molnár group on the role of regulated synaptic vesicular release in specialised synapse formation has made it to the cover of Cerebral Cortex.

Similar stories

Reducing fat in the diabetic heart could improve recovery from heart attack

New research from the Heather Group has shown that in type 2 diabetes an overload of lipids reduces the heart’s ability to generate energy during a heart attack, decreasing chances of recovery.

The brain’s one-sided teaching signals

A new study by the Lak group reveals a novel facet of dopamine signalling during visual decision making.

Fellowship awarded to Huriye Atilgan to enhance our understanding of value-based decision-making

Congratulations are in order for Postdoctoral Research Scientist Dr Huriye Atilgan who has been awarded a prestigious Sir Henry Wellcome Postdoctoral Fellowship funded by the Wellcome Trust.

The future of stroke treatment

A team of international collaborators including DPAG's Dr Mootaz Salman has been researching a promising new therapeutic for the treatment of strokes and other brain injuries.

New review reveals proof of concept for an anti-obesity immunotherapy

The Domingos lab has published a new opinion piece in Science investigating the implications of a Memorial Sloan Kettering Cancer Center study that lays the foundations for a potential new anti-obesity treatment in the form of targeting adipose tissue-resident macrophages.