Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Dynamic expression patterns of the pudgy/spondylocostal dysostosis gene Dll3 in the developing nervous system.

    7 November 2018

    Defects in the Notch pathway ligand Dll3 have been identified in the mouse pudgy (Dll3(pu)) and human spondylocostal dysostosis (SD, MIM 277300) mutations. Although these mutations are primarily associated with segmental defects in the axial skeleton and somitic patterning, they also exhibit cranial neurological defects. Therefore we have looked at the expression of Dll3 in the developing mouse nervous system. The expression of Notch ligands and receptors shares common features at 10.75 dpc in the rhombic lips and dorsal hindbrain. Temporal analysis of Dll3 expression from 9.0 to 11.0 dpc reveals that it is strongly expressed in laminar columns linked with regions of neuronal differentiation and hindbrain segmentation. Transverse sections show that Dll3 is expressed in territories where commissural neurons are formed. We have also looked at neuronal patterning in the mid-hindbrain region in Dll3(pu) mutants.

  • Unrestricted lineage differentiation of parthenogenetic ES cells.

    7 November 2018

    The developmental potential of parthenogenetic embryonic stem (P-ES) cells was studied in teratomas and mouse chimaeras. Teratomas derived from P-ES cells contained a mixture of tissue types with variable proportions of specific tissues. Three of the eight P-ES cell lines analysed showed high proportions of striated muscle in teratomas, similar to teratomas from normal embryos or ES cell lines derived from fertilised embryos (F-ES cells). Our study also revealed that one P-ES cell line showed little lineage restriction in injection chimaeras. Descendants of the P-ES cells contributed to most tissues of chimaeric fetuses in patterns similar to F-ES cells. Normal colonisation of muscle, liver and pancreas was found in adult chimaeras. P-ES cells also showed similar haematopoietic differentiation and maturation as F-ES cells. However, extensive P-ES cell contribution was associated with a reduction in body size. These findings suggest that, while P-ES cells display more extensive developmental potential than the cells of parthenogenetic embryos from which they were derived, they only retained properties related to the presence of the maternal genome. To elucidate the molecular basis for the lack of lineage restriction during in vivo differentiation, the expression of four imprinted genes, H19, Igf2r, Igf2 and Snrpn was compared among five P-ES and two F-ES cell lines. Expression levels of these genes varied among the different ES cell lines, both in undifferentiated ES cells and in embryoid bodies.

  • Cited2, a coactivator of HNF4alpha, is essential for liver development.

    7 November 2018

    The transcriptional modulator Cited2 is induced by various biological stimuli including hypoxia, cytokines, growth factors, lipopolysaccharide (LPS) and flow shear. In this study, we report that Cited2 is required for mouse fetal liver development. Cited2(-/-) fetal liver displays hypoplasia with higher incidence of cell apoptosis, and exhibits disrupted cell-cell contact, disorganized sinusoidal architecture, as well as impaired lipid metabolism and hepatic gluconeogenesis. Furthermore, we demonstrated the physical and functional interaction of Cited2 with liver-enriched transcription factor HNF4alpha. Chromatin immunoprecipitation (ChIP) assays further confirmed the recruitment of Cited2 onto the HNF4alpha-responsive promoters and the reduced HNF4alpha binding to its target gene promoters in the absence of Cited2. Taken together, this study suggests that fetal liver defects in mice lacking Cited2 result, at least in part, from its defective coactivation function for HNF4alpha.

  • Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species.

    7 November 2018

    Unraveling the gene regulatory networks that govern development and function of the mammalian heart is critical for the rational design of therapeutic interventions in human heart disease. Using the Drosophila heart as a platform for identifying novel gene interactions leading to heart disease, we found that the Rho-GTPase Cdc42 cooperates with the cardiac transcription factor Tinman/Nkx2-5. Compound Cdc42, tinman heterozygous mutant flies exhibited impaired cardiac output and altered myofibrillar architecture, and adult heart-specific interference with Cdc42 function is sufficient to cause these same defects. We also identified K(+) channels, encoded by dSUR and slowpoke, as potential effectors of the Cdc42-Tinman interaction. To determine whether a Cdc42-Nkx2-5 interaction is conserved in the mammalian heart, we examined compound heterozygous mutant mice and found conduction system and cardiac output defects. In exploring the mechanism of Nkx2-5 interaction with Cdc42, we demonstrated that mouse Cdc42 was a target of, and negatively regulated by miR-1, which itself was negatively regulated by Nkx2-5 in the mouse heart and by Tinman in the fly heart. We conclude that Cdc42 plays a conserved role in regulating heart function and is an indirect target of Tinman/Nkx2-5 via miR-1.

  • HIF-1α deletion partially rescues defects of hematopoietic stem cell quiescence caused by Cited2 deficiency.

    7 November 2018

    Cited2 is a transcriptional modulator involved in various biologic processes including fetal liver hematopoiesis. In the present study, the function of Cited2 in adult hematopoiesis was investigated in conditional knockout mice. Deletion of Cited2 using Mx1-Cre resulted in increased hematopoietic stem cell (HSC) apoptosis, loss of quiescence, and increased cycling, leading to a severely impaired reconstitution capacity as assessed by 5-fluorouracil treatment and long-term transplantation. Transcriptional profiling revealed that multiple HSC quiescence- and hypoxia-related genes such as Egr1, p57, and Hes1 were affected in Cited2-deficient HSCs. Because Cited2 is a negative regulator of HIF-1, which is essential for maintaining HSC quiescence, and because we demonstrated previously that decreased HIF-1α gene dosage partially rescues both cardiac and lens defects caused by Cited2 deficiency, we generated Cited2 and HIF-1α double-knockout mice. Additional deletion of HIF-1α in Cited2-knockout BM partially rescued impaired HSC quiescence and reconstitution capacity. At the transcriptional level, deletion of HIF-1α restored expression of p57 and Hes1 but not Egr1 to normal levels. Our results suggest that Cited2 regulates HSC quiescence through both HIF-1-dependent and HIF-1-independent pathways.

  • TBX6 null variants and a common hypomorphic allele in congenital scoliosis.

    7 November 2018

    BACKGROUND: Congenital scoliosis is a common type of vertebral malformation. Genetic susceptibility has been implicated in congenital scoliosis. METHODS: We evaluated 161 Han Chinese persons with sporadic congenital scoliosis, 166 Han Chinese controls, and 2 pedigrees, family members of which had a 16p11.2 deletion, using comparative genomic hybridization, quantitative polymerase-chain-reaction analysis, and DNA sequencing. We carried out tests of replication using an additional series of 76 Han Chinese persons with congenital scoliosis and a multicenter series of 42 persons with 16p11.2 deletions. RESULTS: We identified a total of 17 heterozygous TBX6 null mutations in the 161 persons with sporadic congenital scoliosis (11%); we did not observe any null mutations in TBX6 in 166 controls (P<3.8×10(-6)). These null alleles include copy-number variants (12 instances of a 16p11.2 deletion affecting TBX6) and single-nucleotide variants (1 nonsense and 4 frame-shift mutations). However, the discordant intrafamilial phenotypes of 16p11.2 deletion carriers suggest that heterozygous TBX6 null mutation is insufficient to cause congenital scoliosis. We went on to identify a common TBX6 haplotype as the second risk allele in all 17 carriers of TBX6 null mutations (P<1.1×10(-6)). Replication studies involving additional persons with congenital scoliosis who carried a deletion affecting TBX6 confirmed this compound inheritance model. In vitro functional assays suggested that the risk haplotype is a hypomorphic allele. Hemivertebrae are characteristic of TBX6-associated congenital scoliosis. CONCLUSIONS: Compound inheritance of a rare null mutation and a hypomorphic allele of TBX6 accounted for up to 11% of congenital scoliosis cases in the series that we analyzed. (Funded by the National Basic Research Program of China and others.).

  • Advances in the Genetics of Congenital Heart Disease: A Clinician's Guide.

    7 November 2018

    Our understanding of the genetics of congenital heart disease (CHD) is rapidly expanding; however, many questions, particularly those relating to sporadic forms of disease, remain unanswered. Massively parallel sequencing technology has made significant contributions to the field, both from a diagnostic perspective for patients and, importantly, also from the perspective of disease mechanism. The importance of de novo variation in sporadic disease is a recent highlight, and the genetic link between heart and brain development has been established. Furthermore, evidence of an underlying burden of genetic variation contributing to sporadic and familial forms of CHD has been identified. Although we are still unable to identify the cause of CHD for most patients, recent findings have provided us with a much clearer understanding of the types of variants and their individual contributions and collectively mark an important milestone in our understanding of both familial and sporadic forms of disease.

  • Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator.

    7 November 2018

    Smad4 plays a pivotal role in signal transduction of the transforming growth factor beta superfamily cytokines by mediating transcriptional activation of target genes. Hetero-oligomerization of Smad4 with the pathway-restricted SMAD proteins is essential for Smad4-mediated transcription. We provide evidence that SMAD hetero-oligomerization is directly required for the Smad4 C-terminal domain [Smad4(C)] to show its transcriptional transactivating activity; this requirement obtains even when Smad4(C) is recruited to promoters by heterologous DNA-binding domains and in the absence of the inhibitory Smad4 N-terminal domain. Defined mutations of GAL4 DNA-binding domain fusion of Smad4(C) that disrupt SMAD hetero-oligomerization suppressed transcriptional activation. Importantly, we found that an orphan transcriptional activator MSG1, a nuclear protein that has strong transactivating activity but apparently lacks DNA-binding activity, functionally interacted with Smad4 and enhanced transcription mediated by GAL4 DNA-binding domain-Smad4(C) and full-length Smad4. Transcriptional enhancement by MSG1 depended on transforming growth factor beta signaling and was suppressed by Smad4(C) mutations disrupting SMAD hetero-oligomerization or by the presence of Smad4 N-terminal domain. Furthermore, Smad4(C) did not show any detectable transactivating activity in yeast when fused to heterologous DNA-binding domains. These results demonstrate additional roles of SMAD hetero-oligomerization in Smad4-mediated transcriptional activation. They also suggest that the transcriptional-activating activity observed in the presence of Smad4 in mammalian cells may be derived, at least in part, from endogenously expressed separate transcriptional activators, such as MSG1.

  • Cited2 gene controls pluripotency and cardiomyocyte differentiation of murine embryonic stem cells through Oct4 gene.

    7 November 2018

    Cited2 (CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail 2) is a transcriptional modulator critical for the development of multiple organs. Although many Cited2-mediated phenotypes and molecular events have been well characterized using in vivo genetic murine models, Cited2-directed cell fate decision in embryonic stem cells (ESCs) remains elusive. In this study, we examined the role of Cited2 in the maintenance of stemness and pluripotency of murine ESCs by a gene-targeting approach. Cited2 knock-out (Cited2(Δ/-), KO) ESCs display defective differentiation. Loss of Cited2 in differentiating ESCs results in delayed silencing of the genes involved in the maintenance of pluripotency and self-renewal of stem cells (Oct4, Klf4, Sox2, and c-Myc) and the disturbance in cardiomyocyte, hematopoietic, and neuronal differentiation. In addition, Cited2 KO ESCs experience a delayed induction of cardiomyocyte differentiation-associated proteins, NFAT3 (along with the reduced expression of NFAT3 target genes, Nkx2.5 and β-MHC), N-cadherin, and smooth muscle actin. CITED2 is recruited to the Oct4 promoter to regulate its expression during early ESC differentiation. This is the first demonstration that Cited2 controls ESC pluripotency and differentiation via direct regulation of Oct4 gene expression.

  • Sparrow Group

    22 October 2015

    Investigating the Genetic and Environmental Causes of Congenital Heart Disease

  • Hens Group

    16 September 2013

  • Patton Group

    28 April 2014

    Nanodiamond as a sensor for biologically generated electric and magnetic fields

  • Garcia-Moreno Group

    19 December 2013

    Forebrain Evolution Research laboratory

  • Zifarelli Group

    5 February 2015

    CLC chloride channels and transporters

  • Packer Group

    21 May 2018