Search results
Found 12360 matches for
The Department hosted a special public understanding of science lecture, the Sherrington Prize Lecture, delivered by Dr Jennifer Doudna FRS on Tuesday 25 June. Dr Doudna outlined research into CRISPR-cas9 gene editing to a captivated audience including graduate students and local sixth form Biology students.
Molly Stevens - Next-Generation mRNA Vaccines: Safer Delivery with Biodegradable Polymers
This project focuses on advancing mRNA vaccine delivery by exploring biodegradable polymers as an alternative to traditional lipid nanoparticles (LNPs). While LNPs, used in vaccines like Pfizer/BioNTech and Moderna, are effective for delivering mRNA into cells, their full immune impact is not yet well understood, potentially leading to adverse effects. Biodegradable polymers, on the other hand, offer greater safety and efficiency due to their ability to be easily cleared from the body and their customizable properties for improved delivery. The project aims to develop lipid-like polymeric nanoparticles (lipidoids) that combine the benefits of both polymer and lipid systems. By synthesizing and testing a wide range of nanoparticle formulations, the goal is to identify new polylipidoid particles that outperform current LNP technology in delivering mRNA to the immune cells in the skin. Success in this research could lead to the development of more effective and safer vaccines, offering better immune responses with fewer side effects. The findings will be important for combating infectious diseases and enhancing the future of vaccine technology.
Molly Stevens - Developing next-generation biosensing technologies
Point-of-care (PoC) testing is vital for managing disease outbreaks and improving healthcare access, especially in low- to middle-income countries (LMICs) where disease prevalence is high and resources are scarce. Traditional molecular diagnostics, such as PCR, require specialized equipment and skilled personnel, making them impractical for PoC settings in resource-limited areas. This project aims to advance PoC diagnostics by integrating platinum nanocatalysts (Pt@Au) into paper-based lateral flow assays (LFAs). These enhanced LFAs offer superior detection limits compared to conventional tests and provide colorimetric results that minimize user error. Additionally, they can incorporate a barcode-style system for multiplexed detection, enabling differential diagnosis across multiple diseases. The project focuses on developing next-generation multiplexed LFAs that can detect both nucleic acids and proteins simultaneously with high sensitivity. By enabling the simultaneous detection of multiple biomarkers in a single test, this project seeks to improve disease management and public health outcomes in LMICs, offering a practical and effective tool for comprehensive diagnostics in challenging settings.
Molly Stevens - Guiding Brain Organoids: Advanced Scaffolds for Neural Growth
The human brain and its function are one of the big mysteries of humankind. Many strategies are helping to gain a fundamental understanding of the development and function of the central nervous system: imaging of the human brain, post-mortem analysis, animal models, and – since only a few years – advanced three-dimensional neural structures which reassemble aspects of the human brain, called brain organoids. Brain organoids have been used to model brain development, diseases and neural circuit formation and function. However, to date the lack of directional control over neurogenesis, as well as the limited capability to support larger tissue structures with sufficient nutrition, limit the potential of these human stem cell derived tissues. In this project we aim to develop a scaffold to support directional neurogenesis and perfusion of large brain organoids. The student will learn a range of methodologies, which will include (but are not limited to) stem cell culture, neural differentiation, 3D printing, confocal microscopy and live imaging. Furthermore, the student will be involved in the fabrication and functionalisation of biomaterials.
Ana Domingos - Fundamental biological mechanisms in Sympathetic Neurocircuitry underlying body weight
Effective obesity management medications that elevate energy expenditure, such as brain-acting sympathomimetics, lead to descending widespread sympathetic activity that raises the heart rate1. These adverse cardiovascular side effects have repeatedly resulted in their market withdrawal or rejection by regulatory agencies despite their potency in reducing body weight. Consequently, treatment options have been limited to suppressing appetite, for instance, with Glucagon-like peptide-1 (GLP-1) mimetic drugs, which lead to a compensatory decrease in energy expenditure, increasing the risk of recurrent weight gain2,3. While reducing food intake is crucial for treating obesity, sustaining a higher energy expenditure is necessary for therapies to be durable. This could be achieved by directly manipulating subpopulation of sympathetic neurons as they release factors within metabolic tissues that trigger anti-obesity actions beyond appetite control4–6, and without cardiac side effects1,7.
Pawel Swietach - Novel insights into tumour acidosis and hypoxia from analyses of mutations, phenotypes and blood oxygen transport
“Novel insights into tumour acidosis and hypoxia from analyses of mutations, phenotypes and blood oxygen transport” DPAG Supervisor: Pawel Swietach
Mootaz Salman - Neuroscience - 'Advanced 3D brain-on-a-chip platforms to study molecular mechanisms of neurodegeneration'
The brain microenvironment is tightly regulated by the blood–brain barrier (BBB) which maintains the central nervous system internal milieu. BBB leakage following neuroinflammation (or systemic inflammation) has recently been described early in the occurrence and development of neurodegenerative disorders including Parkinson’s, Alzheimer's, and cerebral small vessel disease. Dynamic 3D models of the BBB represent a major advance on traditional static 2D models allowing cells to be in a physiologically realistic native-like 3D environment that faithfully recapitulate the complexity of an in vivo system without artificial support membranes. We seek highly motivated DPhil students with either a scientific or medical background to join our group to work on the molecular mechanisms of BBB (dys)function in neurodegeneration. In this project, you will combine the use of patient-derived induced pluripotent stem cells (iPSCs) together with novel brain-on-a-chip platforms, advanced microscopy, microfluidics, and molecular assays. This project will advance our ability to understand how does inflammation-mediated BBB dysfunction lead to the development of neurodegeneration and dementia. It will establish a framework to address fundamental questions about the role of the BBB in health and neurodegeneration.
Black History Month 2023 - Saluting Our Sisters: Mary Logan Reddick
Mary Logan Reddick (31 December 1914 - 1 October 1966)
Black History Month 2023 - Saluting Our Sisters: Marie Daly
Marie Daly (April 16th, 1921 – October 28th, 2003)
Black History Month 2023 - Saluting Our Sisters: Dolores Cooper Shockley
Dolores Cooper Shockley (21 April 1930-10 October 2020)
Damian Tyler - Cardiac Sciences / Metabolism & Endocrinology - 'Assessment of Cardiac Metabolism Using Hyperpolarized Magnetic Resonance Imaging'
The role of abnormal cardiac substrate metabolism in the development of many cardiovascular diseases and the therapeutic potential of interventions targeting cardiac substrate metabolism are unclear. Magnetic Resonance Imaging and Spectroscopy (MRI/MRS) have long been used to monitor cardiac structure and function. However, the application of MRI/MRS for metabolic imaging has been limited by an intrinsically low sensitivity. Hyperpolarized Magnetic Resonance (hp-MR) is a new technique that yields greater than 10,000-fold signal increases in MR images and enables unprecedented real-time visualization of the biochemical mechanisms of abnormal metabolism. This allows measurement of instantaneous rates of substrate uptake and enzymatic transformation in vivo, providing a sensitive assessment of disease and a new means to monitor treatment response. This project will explore the application of hp-MR in the study of cardiovascular disease, enabling the assessment of pyruvate metabolism through the key metabolic enzyme, pyruvate dehydrogenase, and how it can be modulated as a therapeutic target.
Vladyslav Vyazovskiy - Neuroscience - 'Renormalization of aging brain networks by sleep enhancement with psychedelics'
Population ageing brings significant challenges to society and the economy. Sleep and cognitive problems are among the major complaints of the elderly, and insufficient or disrupted sleep has been linked to a broad range of neurological and neurodegenerative disorders. One of the most notable examples is Alzheimer’s disease, which has been directly linked with sleep disruption, and has no cure. It has been proposed that improving or enhancing sleep could have far-reaching health benefits beyond the improvement of sleep per se. Age-related changes in cognitive functions encompass a reduced capacity to learn new facts and skills (plasticity), as well as attentional and memory problems. It is well established that cortical synapses and firing rates are dynamically modulated by intrinsic, naturally occurring processes, of which sleep is of key significance. For instance, evidence suggests that during sleep some synaptic connections are strengthened, while others are weakened or eliminated, to allow bringing the overall synaptic strength to its homeostatic set point. Sleep also plays an important role in memory consolidation. According to the prevailing view, sleep and associated large-scale network oscillations, such as slow waves and sleep spindles, are necessary for the transfer of temporary memory traces from the hippocampus for long-term storage in the cortex, where they are integrated into existing memory schemata. Sleep disruption prevents consolidation of recent memories, and equally importantly, severely reduces the capacity for further learning. There is a great deal of interest in developing new approaches to improve sleep quality or enhance brain oscillations during sleep, and the possibility of non-invasive modulation of sleep oscillations has recently attracted significant attention. However, research in this areas is still rudimentary, and studies often yield contradictory results. It is well established that both sleep and psychedelic drugs exert a profound effect on neural activity across the brain, including changes to neuronal firing rates and the strength of synaptic connections. Our recent data suggest that in laboratory mice 5-MeO DMT and psilocin induce an altered state of vigilance, characterised by an intrusion of slow-wave activity – the key hallmark of NREM sleep – in the awake state. This finding is highly relevant given the established functional role of sleep in general, and slow-wave activity in particular in a broad range of restorative processes – from synaptic renormalisation to clearance of toxic by-products of metabolism. Not surprisingly, there are many studies currently underway aiming to artificially enhance sleep slow waves for therapeutic benefit. However, to the best of our knowledge, the possibility of using psychedelics as a tool to promote restorative processes in the brain in the context of ageing, and its associated risk for cognitive decline and neurodegeneration, has not been explored. We propose that enhancement of slow waves by psychedelics can restore the capacity for synaptic plasticity, which is especially relevant in the context of the ageing brain. My laboratory has a unique combination of relevant expertise – from fundamental sleep neurobiology, including sleep in ageing, to synaptic plasticity, psychedelics and closed-loop modulation of brain activity during sleep. We benefit from a highly stimulating interdisciplinary environment at DPAG, SCNi and KIND, and a long-term collaboration with Beckley Psytech Ltd. The proposed research has a strong potential to provide essential knowledge which will be used to develop innovative therapies for restoring the potential for synaptic plasticity in the ageing brain.
Vladyslav Vyazovskiy - Neuroscience - 'Controlled hypometabolic state for resetting brain networks'
Hibernation is a widespread evolutionary strategy employed by many animal species to deal with adverse environmental conditions, such as food scarcity, low or high temperatures and climatic natural disasters. Hypometabolism is typically considered as an energy saving strategy, but it is employed acutely, for example in response to imminent threat, such as predation risk. Much research has been directed towards investigating peripheral bodily physiology during hibernation, but, surprisingly, the brain mechanisms of torpor, as well as the effects of hibernation on the brain remain under-investigated. Limited knowledge suggests that torpor represents a remarkable example of brain plasticity, reflected in massive synaptic remodelling upon entrance into and emergence from hibernation. Harnessing this capacity for human applications remains in its infancy. The proposed work will develop a novel approach, based on closed loop neuromodulation, which will enable a physiological induction of torpor, to investigate its effects on brain function, and to test the hypothesis that resetting brain networks through cycles of hibernation increases resilience to adverse conditions, including mental health conditions, such as PTSD and depression. In this project we aim to unravel physiological mechanisms involved in spontaneous entering of the state of hibernation in natural torpidators Phodopus sungorus. We will use a closed-loop approach where combined monitoring of brain activity and physiological parameters, such as levels of metabolism, body temperature and heart rate, will be dynamically coupled with relevant environmental factors, such as lighting, temperature and gaseous composition of air, to facilitate state transitions through stimulation of the brain and the autonomic nervous system in a physiologically relevant context. The key innovative element of this proposal is the new approach to harness hibernation-associated brain plasticity for treatment of mental health disorders, such as PTSD and depression. We will study how spontaneous and induced hypometabolism resets brain networks through synaptic remodelling, and investigate the role of sleep in homeostatic regulation of torpor-related synaptic plasticity.
Clive Wilson - Metabolism & Endocrinology - 'Regulation of microcarriers: new messengers of cell-cell and reproductive signalling in higher organisms'
Cell-cell communication controls almost all physiological processes in multicellular organisms and is defective in many diseases. Our group has developed the male reproductive accessory gland in the fruit fly Drosophila melanogaster as a new genetic model to study the fundamental processes involved in secretion and signalling. Employing this system, we discovered that multiple secreted signals, including Sex Peptide, the central regulator of female post-mating responses, are packaged into lipophilic structures that we call microcarriers, which stabilise these proteins in the gland and then permit their rapid release when deposited in the female uterus. We have now found that evolutionarily conserved derivatives of the lipid ceramide and the enzymes that produce them have multiple roles in generating microcarriers. In humans, components of this microcarrier biogenesis pathway are required for several biological processes in humans. They are highly upregulated in cancer and implicated in metabolic disease and obesity. In this project, additional new evolutionarily conserved regulators of microcarriers that we have recently identified will be characterised using advanced genetic and imaging technologies to determine their functions. We anticipate that this work could provide the stepping stone to extend our studies into human cells and assess the relevance of microcarriers to human health and disease.
Clive Wilson - Development & Cell Biology - 'Dissecting the conserved in vivo regulation of Rab11-exosomes in Drosophila'
Exosomes are nano-sized vesicles secreted from the endosomal compartments of cells. They carry a multitude of different bioactive cargos, including proteins, RNAs and lipids that can reprogramme target cells. Exosomes have been implicated in many pathologies, in particular cancer, where they can prime pre-metastatic sites, induce drug resistance and suppress the immune system. However, they are also involved in complex physiological cell-cell signalling events. For example, we found that exosomes secreted into seminal fluid in the male accessory gland of the fruit fly reprogramme female behaviour, so she rejects other males that try to mate with her. Using this fly model in which exosomes are made inside unusually large intracellular compartments that can be imaged in real-time, we identified a novel evolutionarily conserved exosome subtype, called Rab11-exosomes, which is the primary mediator of key physiological and cancer-relevant exosome functions, despite representing a small fraction of all secreted vesicles. We recently identified multiple new conserved regulators of Rab11-exosomes by combining human Rab11-exosome proteomics with fly genetic analysis. This project will involve analysing these regulators further, focusing on how they shape Rab11-exosomes, coat these exosomes with extravesicular proteins and traffic them to the cell surface, mechanisms that are all potential targets for future exosome subtype-specific therapies. See https://www.biorxiv.org/content/10.1101/2024.03.28.586966v2 for recent developments.
Richard Wade-Martins - Neuroscience - 'Human stem cell models of neurological disease'
We seek highly motivated DPhil students with either a scientific or medical background to join our laboratory to work on the molecular mechanisms of neurological and neurodegenerative diseases. Techniques in molecular genetics have allowed the identification of genes and proteins with an important function in both familial and sporadic forms of Parkinson’s disease and Alzheimer’s disease. Our laboratory focusses on following up these genes and proteins to better understand disease mechanisms to identify potential therapeutic targets for further translational studies. To undertake this, we work with induced pluripotent stem cells (iPSCs) generated from patients with Parkinson’s, Alzheimer’s and related disorders. iPSC-derived patient models promise to revolutionize the study of neurodegenerative diseases in which the critical cell type has been previously inaccessible. The capability to generate, engineer, differentiate and phenotype iPSC-derived neurons and glia from patients with neurodegeneration allows for the study of highly physiological human models of disease. We have undertaken a detailed phenotypic analysis of patient and control iPSC-derived neurons and glia and identified and published strong cellular phenotypes using robust assays suitable for studying disease mechanisms across a range of new projects.
Clive Wilson - Neuroscience - 'Regulation of physiological and pathological amyloidogenesis in Alzheimer’s disease and beyond'
Amyloidogenesis, the aggregation of soluble proteins into insoluble fibrils, has multiple biological functions in health and disease, eg, in Alzheimer’s Disease (AD), aggregations of A-beta peptides, cleaved products of Amyloid Precursor Protein (APP), form plaques, while peptide hormones naturally condense into insoluble, dense-core granules (DCGs), stored within secretory vesicles until release. However, in vivo assays to analyse how amyloidogenesis is initiated are lacking. We have developed a new cellular model for DCG biogenesis, the Drosophila prostate-like secondary cell (SC). These cells have highly enlarged (5 micron diameter) DCG compartments, permitting the rapid process of DCG assembly to be followed by light and fluorescence microscopy in real-time. We find DCG formation requires the fly homologues of APP, called APPL, and another amyloidogenic protein, TGF-beta-induced, as well as intraluminal vesicles that are secreted as so-called Rab11-exosomes. Genetic dissection of the DCG biogenesis process in SCs shows that it is disrupted by mutant proteins linked to AD, including A-beta peptides and Tau, producing several AD-like phenotypes, and strongly suggests that these previously unappreciated defects are key triggers in pathology. This project will characterise this process further in flies and investigate how pathological defects can be suppressed by genetic manipulations, drugs and dietary changes. See https://www.biorxiv.org/content/10.1101/2024.03.28.586966v2 for recent developments.