Search results
Found 12740 matches for
Welcome to OXION, Universities of Oxford, Cambridge, London and MRC Harwell
Linkage analysis of two cloned DNA sequences, DXS197 and DXS207, in hypophosphatemic rickets families.
The human X-linked hypophosphatemic rickets gene locus (HYP, formerly HPDR) has been previously localized by linkage analysis to Xp22.31-Xp21.3 and the locus order Xpter-DXS43-HYP-DXS41-Xcen established. Recombination between HYP and these flanking markers is frequently observed and additional markers have been sought. The polymorphic loci DXS197 and DXS207 have been localized to Xpter-Xp11 and Xp22-Xp21, respectively. We have further localized DXS197 to Xpter-Xp21.3 by using a panel of rodent-human hybrid cells and have established the map positions of DXS197 and DXS207 in relation to HYP by linkage studies of hypophosphatemic rickets families. Linkage between DXS197 and the loci DXS43, DXS85, and DXS207 was established with peak lod score values of 6.19, 0 = 0.032; 4.14, 0 = 0.000; and 3.01, 0 = 0.000, respectively. Multilocus linkage analysis mapped the DXS197 and DXS207 loci distal to HYP and demonstrated the locus order Xpter-DXS85-(DXS207, DXS43, DXS197)-HYP-DXS41-Xcen. These additional genetic markers DXS197 and DXS207 will be useful as alternative markers in the genetic counseling of some families.
The European dimension for the mouse genome mutagenesis program.
The European Mouse Mutagenesis Consortium is the European initiative contributing to the international effort on functional annotation of the mouse genome. Its objectives are to establish and integrate mutagenesis platforms, gene expression resources, phenotyping units, storage and distribution centers and bioinformatics resources. The combined efforts will accelerate our understanding of gene function and of human health and disease.
Towards a mutant map of the mouse--new models of neurological, behavioural, deafness, bone, renal and blood disorders.
With the completion of the first draft of the human genome sequence, the next major challenge is assigning function to genes. One approach is genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes of interest and subsequent mapping and identification of the mutated genes in question. We (a consortium made up of GlaxoSmithKline, the MRC Mammalian Genetics Unit and Mouse Genome Centre, Harwell, Imperial College, London, and the Royal London Hospital) have used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for use as animal models of human disease and for gene function assignment (Nolan et al., 2000). As of 2003, 35,000 mice have been produced to date in a genome-wide screen for dominant mutations and screened using a variety of screening protocols. Nearly 200 mutants have been confirmed as heritable and added to the mouse mutant catalogue and, overall, we can extrapolate that we have recovered over 700 mutants from the screening programme. For further information on the project and details of the data, see http://www.mgu.har.mrc.ac.uk/mutabase.
Correlation of SMNt and SMNc gene copy number with age of onset and survival in spinal muscular atrophy.
Childhood-onset autosomal recessive spinal muscular atrophy (SMA) is associated with absence of the telomeric survival motor neuron gene (SMNt) in most patients, and deletion of the neuronal apoptosis inhibitory protein (NAIP) gene in the majority of severely affected patients. Analysis of SMNt has been complicated by the existence of a centromeric copy, SMNc, which is almost identical to SMNt but which can be distinguished from it by restriction enzyme analysis. In this study 143 SMA patients have been genotyped for the presence or absence of the SMNt, SMNc and NAIP genes, and the data correlated with quantifiable clinical variables. Although a significant correlation was observed between the presence or absence of the NAIP gene and the severity of the clinical phenotype in SMA patients generally, there was no difference in age of onset or survival in type I patients with the NAIP+ or NAIP- genotype. Fluorimetric PCR analysis of SMNc gene dosage in 57 patients homozygous for the absence of the SMNt gene but in whom the NAIP gene was present showed a highly significant correlation between SMNc copy number and SMA subtype, and between SMNc copy number and both age of onset and length of survival. The data provide strong statistical support for the emerging consensus that the clinical phenotype in SMA is directed primarily by the level of functional SMN protein. The lower SMNc copy number in type I patients in whom the NAIP gene is present suggests that the SMNt gene is removed by deletion in the majority of such patients, rather than by gene conversion as is the case in SMA types II and III.
Two novel microsatellite markers for prenatal prediction of spinal muscular atrophy (SMA).
Autosomal recessive spinal muscular atrophy (SMA) has been mapped to a 6-cM interval on chromosome 5q12-13.3, flanked proximally by locus D5S6 and distally by locus D5S112. In this study we describe the isolation of two new microsatellite markers (EF1/2a and EF13/14) near locus D5S125, which lies 2 cM distal to D5S6. We show by linkage analysis and the study of the recombinants in 55 SMA pedigrees that the disease lies in the 4-cM interval between EF1/2a and D5S112. Fluorescence in situ analysis of cosmids from D5S6, EF1/2 and D5S112 confirms the genetic order and relative distance of markers. The microsatellites EF1/2a and EF13/14 are the first highly polymorphic PCR-based proximal markers in SMA to be described, and will be of value in prenatal prediction of the disorder.
The fragile X syndrome.
An amplification of a highly unstable DNA element has been identified at the fragile X locus in Xq27.3. This sequence appears to be both the source of the primary mutation causing the fragile X syndrome, apparently having its causative effect through the methylation of the FMR-1 HTF island and the region of cytogenetic fragility. The direct analysis of the genotype of carrier and affected individuals can be used as a direct diagnosis tool which will improve both the accuracy and speed of diagnosis. The identification of hereditary unstable DNA in a disease with such a wide level of non-penetrance and variable phenotype may give clues as to the basis of non-penetrance in other human genetic disorders.
A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse.
As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.
Origins of the fragile X syndrome mutation.
The fragile X syndrome is a common cause of mental impairment. In view of the low reproductive fitness of affected males, the high incidence of the syndrome has been suggested to be the result of a high rate of new mutations occurring exclusively in the male germline. Extensive family studies, however, have failed to identify any cases of a new mutation. Alternatively, it has been suggested that a selective advantage of unaffected heterozygotes may, in part, explain the high incidence of the syndrome. Molecular investigations have shown that the syndrome is caused by the amplification of a CGG trinucleotide repeat in the FMR-1 gene which leads to the loss of gene expression. Further to this, genetic studies have suggested that there is evidence of linkage disequilibrium between the fragile X disease locus and flanking polymorphic markers. More recently, this analysis has been extended and has led to the observation that a large number of fragile X chromosomes appear to be lineage descendants of founder mutation events. Here, we present a study of the FRAXAC1 polymorphic marker in our patient cohort. We find that its allele distribution is strikingly different on fragile X chromosomes, confirming the earlier observations and giving further support to the suggestions of a fragile X founder effect.
A contig of non-chimaeric YACs containing the spinal muscular atrophy gene in 5q13.
We have constructed a contig of non-chimaeric yeast artificial chromosomes (YACs) across the candidate region for childhood autosomal recessive spinal muscular atrophy (SMA) in 5q13. A novel microsatellite reduces the candidate region to approximately 400kb of DNA distal to D5S435. The candidate region contains blocks of chromosome 5 specific repeats which have copies on 5p as well as elsewhere on 5q. Restriction mapping of the YACs reveals at least one CpG island in the SMA gene region. The YAC maps indicate that the contig contains minimal rearrangements or deletions. The data show the value of screening several YAC libraries simultaneously in order to construct a set of overlapping sequences suitable for candidate gene searches and direct genomic sequencing.
Early prenatal diagnosis of the fragile site at Xq27.3 associated with Martin-Bell syndrome.
Early prenatal diagnosis of the fragile X was attempted in 44 pregnancies, including one twin pregnancy at risk of Martin-Bell (MB) syndrome. The sex ratio was 24M:21F. The fragile site was reproducibly demonstrated in cultured chorionic villus (CV) cells in eight male and five female fetuses. Six of the male and three of the female fetuses were terminated. Simultaneous RFLP analysis provided confirmative data with flanking DNA markers in 3 of 13 analysed cases. Recombination and/or non-informativeness at available distal and/or proximal loci were found in nine cases. In one male fetus, discordance between the haplotype and cytogenetics (fragile-X-negative) suggested the presence of a normal male transmitter, a double meiotic cross-over within the region, or a false-negative cytogenetic diagnosis. However, discordance between prenatal and post-termination/postnatal cytogenetic findings was not observed in this series. The use of excess thymidine for induction of the fragile X in cultured CV cells provided in the majority of cases a safe and rapid method for cytogenetic diagnosis, with options for early induced termination in fragile-X-positive pregnancies, for simultaneous RFLP analysis, and for subsequent second-trimester analysis of fetal blood in complicated cases.
Localisation of a dystrophin-related autosomal gene to 6q24 in man, and to mouse chromosome 10 in the region of the dystrophia muscularis (dy) locus.
We have localised a dystrophin-related autosomal gene called DMDL (Duchenne muscular dystrophy-like) to human chromosome 61q24 by in situ hybridisation. Using restriction fragment length polymorphism analysis in two mouse species, we have localised the homologous gene Dmdl in the mouse to chromosome 10 proximal to the Myb oncogene. A neuromuscular disease locus dystrophia muscularis (dy) has previously been assigned to this region of mouse chromosome 10.
A study of genetic linkage heterogeneity in adult polycystic kidney disease.
The mutation for adult polycystic kidney disease (APKD) has previously been localised to chromosome 16 by the demonstration of genetic linkage with the loci for the alpha-chain of haemoglobin and phosphoglycolate phosphatase. These studies were carried out, however, on only nine families so that the possibility remained that mutations at other genetic loci might produce the disease. Such genetic heterogeneity of linkage would invalidate the general use of chromosome 16 markers for the purposes of detection of the disease, and complicate the characterisation of APKD at the molecular level. Therefore further families were studied to address this question. A total of 28 northern European pedigrees were analysed, all apparently unrelated, and with origins in England, Scotland, Holland and eastern Finland. No evidence was found to suggest heterogeneity of genetic linkage between alpha-globin and the APKD locus in this population.
Analysis of mutations in the tudor domain of the survival motor neuron protein SMN.
Autosomal recessive childhood onset spinal muscular atrophy (SMA) is a leading cause of infant mortality caused by mutations in the survival motor neuron (SMN) gene. The SMN protein is involved in RNA processing and is localised in structures called GEMs in the nucleus. Nothing is yet understood about why mutations in SMN gene result in the selective motor neuron loss observed in patients. The SMN protein domains conserved across several species may indicate functionally significant regions. Exon 3 of SMN contains homology to a tudor domain, where a Type I SMA patient has been reported to harbour a missense mutation. We have generated missense mutants in this region of SMN and have tested their ability to form GEMs when transfected into HeLa cells. Our results show such mutant SMN proteins still localise to GEMs. Furthermore, exon 7 deleted SMN protein appears to exert a dominant negative effect on localisation of endogenous SMN protein. However, exon 3 mutant protein and exon 5 deleted protein exert no such effect.
The sparing of extraocular muscle in dystrophinopathy is lost in mice lacking utrophin and dystrophin.
The extraocular muscles are one of few skeletal muscles that are structurally and functionally intact in Duchenne muscular dystrophy. Little is known about the mechanisms responsible for differential sparing or targeting of muscle groups in neuromuscular disease. One hypothesis is that constitutive or adaptive properties of the unique extraocular muscle phenotype may underlie their protection in dystrophinopathy. We assessed the status of extraocular muscles in the mdx mouse model of muscular dystrophy. Mice showed mild pathology in accessory extraocular muscles, but no signs of pathology were evident in the principal extraocular muscles at any age. By immunoblotting, the extraocular muscles of mdx mice exhibited increased levels of a dystrophin analog, dystrophin-related protein or utrophin. These data suggest, but do not provide mechanistic evidence, that utrophin mediates eye muscle protection. To examine a potential causal relationship, knockout mouse models were used to determine whether eye muscle sparing could be reversed. Mice lacking expression of utrophin alone, like the dystrophin-deficient mdx mouse, showed no pathological alterations in extraocular muscle. However, mice deficient in both utrophin and dystrophin exhibited severe changes in both the accessory and principal extraocular muscles, with the eye muscles affected more adversely than other skeletal muscles. Selected extraocular muscle fiber types still remained spared, suggesting the operation of an alternative mechanism for muscle sparing in these fiber types. We propose that an endogenous upregulation of utrophin is mechanistic in protecting extraocular muscle in dystrophinopathy. Moreover, data lend support to the hypothesis that interventions designed to increase utrophin levels may ameliorate the pathology in other skeletal muscles in Duchenne muscular dystrophy.
Dystrobrevin deficiency at the sarcolemma of patients with muscular dystrophy.
Mutations in the genes encoding dystrophin or dystrophin-associated proteins are responsible for Duchenne muscular dystrophy or various forms of limb-girdle muscular dystrophies respectively. We have recently cloned the gene for the murine 87 kDa postsynaptic protein dystrobrevin, a dystrophin-associated protein. Anti-dystrobrevin antibodies stain the sarcolemma in normal skeletal muscle indicating that dystrobrevin co-localises with dystrophin and the dystrophin-associated protein complex. By contrast, dystrobrevin membrane staining is severely reduced in muscles of Duchenne muscular dystrophy patients, consistent with dystrobrevin being a dystrophin-associated protein. Interestingly, dystrobrevin staining at the sarcolemma is dramatically reduced in patients with limb-girdle muscular dystrophy arising from the loss of one or all of the sarcoglycan components. Normal dystrobrevin staining is observed in patients with other forms of limb-girdle muscular dystrophy where dystrophin and the rest of the dystrophin-associated protein complex are normally expressed and in other neuromuscular disorders. Our results show that dystrobrevin-deficiency is a generic feature of dystrophies linked to dystrophin and the dystrophin-associated proteins. This is the first indication that a cytoplasmic component of the dystrophin-associated protein complex may be involved in the pathogenesis of limb-girdle muscular dystrophy.
Triplet repeat expansion at the FRAXE locus and X-linked mild mental handicap.
We have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with the expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here we present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families we demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25 copies of the repeat, whereas affected individuals have > 200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males.
Mapping the gene causing X-linked recessive idiopathic hypoparathyroidism to Xq26-Xq27 by linkage studies.
Idiopathic hypoparathyroidism has been reported to occur as an X-linked recessive disorder in two multigeneration kindreds. Affected individuals, who are males, suffer from infantile onset of epilepsy and hypocalcemia, which appears to be due to an isolated congenital defect of parathyroid gland development; females are not affected and are normocalcemic. We have performed linkage studies in these two kindreds (5 affected males, 11 obligate carrier females, and 44 unaffected members) and have used cloned human X chromosome sequences identifying restriction fragment length polymorphisms to localize the mutant gene causing this disorder. Our studies established linkage between the X-linked recessive idiopathic hypoparathyroid gene (HPT) and the DXS98 (4D.8) locus, peak LOD score = 3.82 (theta = 0.05), thereby mapping HPT to the distal long arm of the X chromosome (Xq26-Xq27). Multilocus analysis indicated that HPT is proximal to the DXS98 (4D.8) locus but distal to the F9 (Factor IX) locus, thereby revealing bridging markers for the disease. The results of this study will improve genetic counseling of affected families, and further characterization of this gene locus will open the way for elucidating the factors controlling the development and activity of the parathyroid glands.
Mapping of human X-linked hypophosphataemic rickets by multilocus linkage analysis.
Eleven families with X-linked dominant hypophosphataemic rickets (HPDR) have been typed for a series of X chromosome markers. Linkage with probe 99.6 (DXS41) was demonstrated with a peak lod score of 4.82 at 10% recombination. Multilocus linkage analysis showed that HPDR maps distal to 99.6; this probe has previously been located at Xp22.31-p21.3 by in situ hybridisation. In the mouse hypophosphataemia (Hyp) maps to the distal part of the X chromosome; our location in man is consistent with a scheme which relates the mouse and human X chromosomes by two rearrangements. No marker has yet been found which shows no recombination with HPDR.
PPM-X: a new X-linked mental retardation syndrome with psychosis, pyramidal signs, and macroorchidism maps to Xq28.
We report a three-generation family manifesting a previously undescribed X-linked mental retardation syndrome. Four of the six moderately retarded males have had episodes of manic-depressive psychosis. The phenotype also includes pyramidal signs, Parkinsonian features, and macroorchidism, but there are no characteristic dysmorphic facial features. Affected males do not show fragile sites at distal Xq on cytogenetic analysis, nor do they have expansions of the CGG repeats at the FRAXA, FRAXE, or FRAXF loci. Linkage analyses were undertaken, and a maximal LOD score of 3.311 at theta = .0 was observed with the microsatellite marker DXS1123 in Xq28. A recombination was detected in one of the affected males with DXS1691 (Xq28), which gives the proximal boundary of the localization. No distal recombination has been detected at any of the loci tested.