Search results
Found 12685 matches for
Welcome to OXION, Universities of Oxford, Cambridge, London and MRC Harwell
Missense mutations in desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro.
BACKGROUND: Mutations in genes encoding desmosomal proteins have been reported to cause arrhythmogenic right ventricular cardiomyopathy (ARVC), an autosomal dominant disease characterised by progressive myocardial atrophy with fibro-fatty replacement. We screened 54 ARVC probands for mutations in desmocollin-2 (DSC2), the only desmocollin isoform expressed in cardiac tissue. METHODS: Mutation screening was performed by denaturing high-performance liquid chromatography and direct sequencing. To evaluate the pathogenic potentials of the DSC2 mutations detected in patients affected with ARVC, full-length wild-type and mutated cDNAs were cloned in eukaryotic expression vectors to obtain a fusion protein with green fluorescence protein (GFP); constructs were transfected in neonatal rat cardiomyocytes and in HL-1 cells. RESULTS: We identified two heterozygous mutations (c.304G>A (p.E102K) and c.1034T>C (p.I345T)) in two probands and in four family members. The two mutations p.E102K and p.I345T map to the N-terminal region, relevant to adhesive interactions. In vitro functional studies demonstrated that, unlike wild-type DSC2, the two N-terminal mutants are predominantly localised in the cytoplasm. CONCLUSION: The two missense mutations in the N-terminal domain affect the normal localisation of DSC2, thus suggesting the potential pathogenic effect of the reported mutations. Identification of additional DSC2 mutations associated with ARVC may result in increased diagnostic accuracy with implications for genetic counseling.
Imaging the cAMP-dependent signal transduction pathway
In recent years, the development of new technologies based on the green fluorescent protein and FRET (fluorescence resonance energy transfer) has introduced a new perspective in the study of cAMP signalling. Real-time imaging of fluorescent biosensors is making it possible to visualize cAMP dynamics directly as they happen in intact, living cells, providing important and original insights for our understanding of the spatiotemporal organization of the cAMP/PKA (protein kinase A) signalling pathway. ©2005 Biochemical Society.
Restricted diffusion of a freely diffusible second messenger: Mechanisms underlying compartmentalized cAMP signalling
It is becoming increasingly evident that the freely diffusible second messenger cAMP can transduce specific responses by localized signalling. The machinery that underpins compartmentalized cAMP signalling is only now becoming appreciated. Adenylate cyclases, the enzymes that synthesize cAMP, are localized at discrete parts of the plasma membrane, and phosphodiesterases, the enzymes that degrade cAMP, can be targeted to selected subcellular compartments. A-kinase-anchoring proteins then serve to anchor PKA (protein kinase A) close to specific targets, resulting in selective activation. The specific activation of such individual subsets of PKA requires that cAMP is made available in discrete compartments. In this presentation, the molecular and structural mechanisms responsible for compartmentalized PKA signalling and restricted diffusion of cAMP will be discussed. ©2006 Biochemical Society.
β-adrenergic- and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes detected with FRET-based biosensor
β-Adrenergic receptor activation regulates cardiac myocyte function through the stimulation of cAMP production and subsequent activation of protein kinase A (PKA). Furthermore, muscarinic receptor activation inhibits as well as facilitates these cAMP-dependent effects. However, it has not always been possible to correlate the muscarinic responses with the direct measurement of changes in cellular cAMP activity. Genetically encoded biosensors have recently been developed, making it possible to monitor real-time changes in cAMP and PKA activity at the single cell level. One such biosensor consists of the regulatory and catalytic subunits of PKA labeled with cyan and yellow fluorescent proteins, respectively. Changes in cAMP activity affecting the association of these labeled PKA subunits can be detected as changes in fluorescence resonance energy transfer. In the present study, an adenovirus-based approach was developed to express this recombinant protein complex in adult cardiac myocytes and use it to monitor changes in cAMP activity produced by β-adrenergic and muscarinic receptor activation. The biosensor expressed with the use of this system is able to detect changes in cAMP activity produced by physiologically relevant levels of β-adrenergic receptor activation without disrupting normal functional responses. It was also possible to directly demonstrate the complex temporal pattern of inhibitory and stimulatory changes in cAMP activity produced by muscarinic receptor activation in these cells. The adenovirus-based approach we have developed should facilitate the use of this biosensor in studying cAMP and PKA-dependent signaling mechanisms in a wide variety of cell types. Copyright © 2005 the American Physiological Society.
β-Oestradiol rescues ΔF508CFTR functional expression in human cystic fibrosis airway CFBE41o- cells through the up-regulation of NHERF1
Background information. CF (cystic fibrosis) is a disease caused by mutations within the CFTR (CF transmembrane conductance regulator) gene. The most common mutation, ΔF508 (deletion of Phe-508), results in a protein that is defective in folding and trafficking to the cell surface but is functional if properly localized in the plasma membrane. We have recently demonstrated that overexpression of the PDZ protein NHERF1 (Na+/H+ -exchanger regulatory factor 1) in CF airway cells induced both a redistribution of ΔF508CFTR from the cytoplasm to the apical membrane and the PKA (protein kinase A)-dependent activation of ΔF508CFTR-dependent chloride secretion. In view of the potential importance of the targeted up-regulation of NHERF1 in a therapeutic context, and since it has been demonstrated that oestrogen treatment increases endogenous NHERF1 expression, we tested the hypothesis that oestrogen treatment can increase NHERF1 expression in a human bronchiolar epithelial CF cell line, CFBE41o-, with subsequent rescue of apical ΔF508CFTR chloride transport activity. Results. We found that CFBE41o- cells do express ERs (oestrogen receptors) in the nuclear fraction and that β-oestradiol treatment was able to significantly rescue ΔF508CFTR-dependent chloride secretion in CFBE41o- cell monolayers with a peak between 6 and 12 h of treatment, demonstrating that the ΔF508CFTR translocated to the apical membrane can function as a cAMP-responsive channel, with a significant increase in chloride secretion noted at 1 nM β-oestradiol and a maximal effect observed at 10 nM. Importantly, knock-down of NHERF1 expression by transfection with siRNA (small interfering RNA) for NHERF1 inhibited the β-oestradiol-dependent increase in ΔF508CFTR protein expression levels and completely prevented the β-oestradiol-dependent rescue of ΔF508CFTR transport activity. Conclusions. These results demonstrate that β-oestradiol-dependent up-regulation of NHERF1 significantly increases ΔF508CFTR functional expression in CFBE41o- cells. © The Authors Journal compilation © 2008 Portland Press Ltd.
Photon moment analysis in cells in the presence of photo-bleaching.
The photon counting histogram (PCH) analysis of the fluorescence fluctuations provides the molecular brightness (epsilon) and the average number of fluorophores (N) in an open observation volume. PCH, which is based on the analysis of the whole of the photon counting histogram, has been recently improved by taking into account the detector dead time effect, which is relevant at high fluorescence rates. We investigate here the possibility of quantitatively applying the PCH analysis in the simplified form of photon moment analysis, in which only the first two moments of the photon counting histogram are computed. We have applied this analysis to low fluorescence signals from living cells in the presence of cell micro-movements and molecular photo-bleaching and describe a simple algorithm for its routine application. The algorithm has been tested on Saccharomyces Cerevisiae (yeast) cells labeled with Dimethyl-pepep and Rhodamine 6G, and Chinese Hamster Ovary (CHO) cells stably expressing the regulatory subunit (RII) of protein kinase A fused to the cyan-emitting variant of GFP (CFP). Our statistical analysis allows us to estimate the local concentrations and the brightness of the fluorophores in different cellular compartments (nucleus, membrane, and cytoplasm) despite the occurrence of microscopic cell movements and significant photo-bleaching.
CAMP and Ca2+ interplay: a matter of oscillation patterns.
Ca(2+) and cAMP signalling pathways are tightly interconnected and the cellular effects mediated by the two second messengers depend strictly on reciprocal modulation. The signalling network that derives from such interplay holds the potential for expanding the information content of the signal enormously and, thus, can contribute substantially to the specificity and diversity of the response. Recent work points to interdependent Ca(2+) and cAMP oscillation patterns as a new paradigm for signal transduction.
A genetically encoded, fluorescent indicator for cyclic AMP in living cells.
Cyclic AMP controls several signalling cascades within cells, and changes in the amounts of this second messenger have an essential role in many cellular events. Here we describe a new methodology for monitoring the fluctuations of cAMP in living cells. By tagging the cAMP effector protein kinase A with two suitable green fluorescent protein mutants, we have generated a probe in which the fluorescence resonance energy transfer between the two fluorescent moieties is dependent on the levels of cAMP. This new methodology opens the way to the elucidation of the biochemistry of cAMP in vivo.
Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.
Termination of cAMP signals by Ca2+ and G(alpha)i via extracellular Ca2+ sensors: a link to intracellular Ca2+ oscillations.
Termination of cyclic adenosine monophosphate (cAMP) signaling via the extracellular Ca(2+)-sensing receptor (CaR) was visualized in single CaR-expressing human embryonic kidney (HEK) 293 cells using ratiometric fluorescence resonance energy transfer-dependent cAMP sensors based on protein kinase A and Epac. Stimulation of CaR rapidly reversed or prevented agonist-stimulated elevation of cAMP through a dual mechanism involving pertussis toxin-sensitive Galpha(i) and the CaR-stimulated increase in intracellular [Ca2+]. In parallel measurements with fura-2, CaR activation elicited robust Ca2+ oscillations that increased in frequency in the presence of cAMP, eventually fusing into a sustained plateau. Considering the Ca2+ sensitivity of cAMP accumulation in these cells, lack of oscillations in [cAMP] during the initial phases of CaR stimulation was puzzling. Additional experiments showed that low-frequency, long-duration Ca2+ oscillations generated a dynamic staircase pattern in [cAMP], whereas higher frequency spiking had no effect. Our data suggest that the cAMP machinery in HEK cells acts as a low-pass filter disregarding the relatively rapid Ca2+ spiking stimulated by Ca(2+)-mobilizing agonists under physiological conditions.
Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses.
In recent years, the development of new technologies based on the green fluorescent protein and fluorescence resonance energy transfer has introduced a new perspective in the study of cell biology. Real-time imaging of fluorescent biosensors has made it possible to directly visualize individual molecular events as they happen in intact, live cells, providing important and original insights for our understanding of biologically relevant problems. This review discusses some essential methodological aspects concerning the generation and use of fluorescence resonance energy transfer-based biosensors and presents selected examples of specific applications that highlight the power of this technology.
Cell entry and cAMP imaging of anthrax edema toxin.
The entry and enzymatic activity of the anthrax edema factor (EF) in different cell types was studied by monitoring EF-induced changes in intracellular cAMP with biochemical and microscopic methods. cAMP was imaged in live cells, transfected with a fluorescence resonance energy transfer biosensor based on the protein kinase A regulatory and catalytic subunits fused to CFP and YFP, respectively. The cAMP biosensor was located either in the cytosol or was membrane-bound owing to the addition of a tag determining its myristoylation/palmitoylation. Real-time imaging of cells expressing the cAMP biosensors provided the time course of EF catalytic activity and an indication of its subcellular localization. Bafilomycin A1, an inhibitor of the vacuolar ATPase proton pump, completely prevented EF activity, even when added long after the toxin. The time course of appearance of the adenylate cyclase activity and of bafilomycin A1 action suggests that EF enters the cytosol from late endosomes. EF remains associated to these compartments and its activity shows a perinuclear localization generating intracellular cAMP concentration gradients from the cell centre to the periphery.
Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells.
Airway ciliary beat frequency regulation is complex but in part influenced by cyclic adenosine monophosphate (cAMP)-mediated changes in cAMP-dependent kinase activity, yet the cAMP concentration required for increases in ciliary beat frequency and the temporal relationship between ciliary beat frequency and cAMP changes are unknown. A lentiviral gene transfer system was developed to express a fluorescence resonance energy transfer (FRET)-based cAMP sensor in ciliated cells. Expression of fluorescently tagged cAMP-dependent kinase subunits from the ciliated-cell-specific foxj1 promoter enhanced expression in fully differentiated ciliated human airway epithelial cells, and permitted simultaneous measurements of ciliary beat frequency and cAMP (represented by the FRET ratio). Apical application of forskolin (1 microM, 10 microM, 20 microM) and, in permeabilized cells, basolateral cAMP (20 microM, 50 microM, 100 microM) caused dose-dependent, albeit similar and simultaneous-increases in cAMP and ciliary beat frequency. However, decreases in cAMP preceded decreases in ciliary beat frequency, suggesting that either cellular cAMP decreases before ciliary cAMP or the dephosphorylation of target proteins by phosphatases occur at a rate slower than the rate of cAMP hydrolysis.
Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells
Airway ciliary beat frequency regulation is complex but in part influenced by cyclic adenosine monophosphate (cAMP)-mediated changes in cAMP-dependent kinase activity, yet the cAMP concentration required for increases in ciliary beat frequency and the temporal relationship between ciliary beat frequency and cAMP changes are unknown. A lentiviral gene transfer system was developed to express a fluorescence resonance energy transfer (FRET)-based cAMP sensor in ciliated cells. Expression of fluorescently tagged cAMP-dependent kinase subunits from the ciliated-cell-specific foxj1 promoter enhanced expression in fully differentiated ciliated human airway epithelial cells, and permitted simultaneous measurements of ciliary beat frequency and cAMP (represented by the FRET ratio). Apical application of forskolin (I μM, 10 μM, 20 μM) and, in permeabilized cells, basolateral cAMP (20 μM, 50 μM, 100 μM) caused dose-dependent, albeit similar and simultaneous - increases in cAMP and ciliary beat frequency. However, decreases in cAMP preceded decreases in ciliary beat frequency, suggesting that either cellular cAMP decreases before ciliary cAMP or the dephosphorylation of target proteins by phosphatases occur at a rate slower than the rate of cAMP hydrolysis.
TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling.
Ligation of the TCR along with the coreceptor CD28 is necessary to elicit T cell activation in vivo, whereas TCR triggering alone does not allow a full T cell response. Upon T cell activation of human peripheral blood T cells, we found that the majority of cAMP was generated in T cell lipid rafts followed by activation of protein kinase A. However, upon TCR and CD28 coligation, beta-arrestin in complex with cAMP-specific phosphodiesterase 4 (PDE4) was recruited to lipid rafts which down-regulated cAMP levels. Whereas inhibition of protein kinase A increased TCR-induced immune responses, inhibition of PDE4 blunted T cell cytokine production. Conversely, overexpression of either PDE4 or beta-arrestin augmented TCR/CD28-stimulated cytokine production. We show here for the first time that the T cell immune response is potentiated by TCR/CD28-mediated recruitment of PDE4 to lipid rafts, which counteracts the local, TCR-induced production of cAMP. The specific recruitment of PDE4 thus serves to abrogate the negative feedback by cAMP which is elicited in the absence of a coreceptor stimulus.
Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases.
Cardiac myocytes have provided a key paradigm for the concept of the compartmentalized cAMP generation sensed by AKAP-anchored PKA. Phosphodiesterases (PDEs) provide the sole route for degrading cAMP in cells and are thus poised to regulate intracellular cAMP gradients. PDE3 and PDE4 represent the major cAMP degrading activities in rat ventriculocytes. By performing real-time imaging of cAMP in situ, we establish the hierarchy of these PDEs in controlling cAMP levels in basal conditions and on stimulation with a beta-adrenergic receptor agonist. PDE4, rather than PDE3, appears to be responsible for modulating the amplitude and duration of the cAMP response to beta-agonists. PDE3 and PDE4 localize to distinct compartments and this may underpin their different functional roles. Our findings indicate the importance of distinctly localized PDE isoenzymes in determining compartmentalized cAMP signaling.
Molecular basis of the allosteric mechanism of cAMP in the regulatory PKA subunit.
The second messenger cyclic Adenosine MonoPosphate (cAMP) mediates many biological process by interacting with structurally conserved nucleotide binding domains (cNBD's). Here, we use molecular dynamics simulations on RIIbeta-PKA, one of the best characterized members of the cNBD family, in presence and absence of cAMP. The results of our calculations are fully consistent with the available experimental data and suggest that the key factor of the cAMP allosteric mechanism in cNBDS's is the increased flexibility of the protein upon ligand release along with a mechanical coupling between helical segments. In addition, our calculations provide a rationale for the experimentally observed cAMP selective binding to PKA.
cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology.
Cyclic nucleotide phosphodiesterases regulate cAMP-mediated signaling by controlling intracellular cAMP content. The cAMP-hydrolyzing activity of several families of cyclic nucleotide phosphodiesterases found in human heart is regulated by cGMP. In the case of PDE2, this regulation primarily involves the allosteric stimulation of cAMP hydrolysis by cGMP. For PDE3, cGMP acts as a competitive inhibitor of cAMP hydrolysis. Several cGMP-mediated responses in cardiac cells, including a potentiation of Ca(2+) currents and a diminution of the responsiveness to beta-adrenergic receptor agonists, have been shown to result from the effects of cGMP on cAMP hydrolysis. These effects appear to be dependent on the specific spatial distribution of the cGMP-generating and cAMP-hydrolyzing proteins, as well as on the intracellular concentrations of the two cyclic nucleotides. Gaining a more precise understanding of how these cross-talk mechanisms are individually regulated and coordinated is an important direction for future research.
Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation.
We have characterized a novel unconventional myosin heavy chain, named MYO18B, that appears to be expressed mainly in human cardiac and skeletal muscles and, at lower levels, in testis. MYO18B transcript is detected in all types of striated muscles but at much lower levels compared to class II sarcomeric myosins, and it is up regulated after in vitro differentiation of myoblasts into myotubes. Phylogenetic analysis shows that this myosin belongs to the recently identified class XVIII, however, unlike the other member of this class, it seems to be unique to Vertebrate since it contains two large amino acid domains of unknown function at the N and C-termini. Immunolocalization of MYO18B protein in skeletal muscle cells shows that this myosin heavy chain is located in the cytoplasm of undifferentiated myoblasts. After in vitro differentiation into myotubes, a fraction of this protein is accumulated in a subset of myonuclei. This nuclear localization was confirmed by immunofluorescence experiments on primary cardiomyocytes and adult muscle sections. In the cytoplasm MYO18B shows a punctate staining, both in cardiac and skeletal fibers. In some cases, cardiomyocytes show a partial sarcomeric pattern of MYO18B alternating that of alpha-actinin-2. In skeletal muscle the cytoplasmic MYO18B results much more evident in the fast type fibers.