Search results
Found 12942 matches for
Welcome to OXION, Universities of Oxford, Cambridge, London and MRC Harwell
Responses in Rat Core Auditory Cortex are Preserved during Sleep Spindle Oscillations.
STUDY OBJECTIVES: Sleep is defined as a reversible state of reduction in sensory responsiveness and immobility. A long-standing hypothesis suggests that a high arousal threshold during non-rapid eye movement (NREM) sleep is mediated by sleep spindle oscillations, impairing thalamocortical transmission of incoming sensory stimuli. Here we set out to test this idea directly by examining sensory-evoked neuronal spiking activity during natural sleep. METHODS: We compared neuronal (n = 269) and multiunit activity (MUA), as well as local field potentials (LFP) in rat core auditory cortex (A1) during NREM sleep, comparing responses to sounds depending on the presence or absence of sleep spindles. RESULTS: We found that sleep spindles robustly modulated the timing of neuronal discharges in A1. However, responses to sounds were nearly identical for all measured signals including isolated neurons, MUA, and LFPs (all differences < 10%). Furthermore, in 10% of trials, auditory stimulation led to an early termination of the sleep spindle oscillation around 150-250 msec following stimulus onset. Finally, active ON states and inactive OFF periods during slow waves in NREM sleep affected the auditory response in opposite ways, depending on stimulus intensity. CONCLUSIONS: Responses in core auditory cortex are well preserved regardless of sleep spindles recorded in that area, suggesting that thalamocortical sensory relay remains functional during sleep spindles, and that sensory disconnection in sleep is mediated by other mechanisms.
Sleep, recovery, and metaregulation: explaining the benefits of sleep.
A commonly held view is that extended wakefulness is causal for a broad spectrum of deleterious effects at molecular, cellular, network, physiological, psychological, and behavioral levels. Consequently, it is often presumed that sleep plays an active role in providing renormalization of the changes incurred during preceding waking. Not surprisingly, unequivocal empirical evidence supporting such a simple bi-directional interaction between waking and sleep is often limited or controversial. One difficulty is that, invariably, a constellation of many intricately interrelated factors, including the time of day, specific activities or behaviors during preceding waking, metabolic status and stress are present at the time of measurement, shaping the overall effect observed. In addition to this, although insufficient or disrupted sleep is thought to prevent efficient recovery of specific physiological variables, it is also often difficult to attribute specific changes to the lack of sleep proper. Furthermore, sleep is a complex phenomenon characterized by a multitude of processes, whose unique and distinct contributions to the purported functions of sleep are difficult to determine, because they are interrelated. Intensive research effort over the last decades has greatly progressed current understanding of the cellular and physiological processes underlying the regulation of vigilance states. Notably, it also highlighted the infinite complexity within both waking and sleep, and revealed a number of fundamental conceptual and technical obstacles that need to be overcome in order to fully understand these processes. A promising approach could be to view sleep not as an entity, which has specific function(s) and is subject to direct regulation, but as a manifestation of the process of metaregulation, which enables efficient moment-to-moment integration between internal and external factors, preceding history and current homeostatic needs.
Sleep and Serotonin Modulate Paracapsular Nitric Oxide Synthase Expressing Neurons of the Amygdala.
Unraveling the roles of distinct neuron types is a fundamental challenge to understanding brain function in health and disease. In the amygdala, a brain structure regulating emotional behavior, the diversity of GABAergic neurons has been only partially explored. We report a novel population of GABAergic amygdala neurons expressing high levels of neuronal nitric oxide synthase (nNOS). These cells are predominantly localized along basolateral amygdala (BLA) boundaries. Performing ex vivo patch-clamp recordings from nNOS+ neurons in Nos1-CreER;Ai9 mice, we observed that nNOS+ neurons located along the external capsule display distinctive electrophysiological properties, axonal and dendritic arborization, and connectivity. Examining their c-Fos expression, we found that paracapsular nNOS+ neurons are activated during a period of undisturbed sleep following sleep deprivation, but not during sleep deprivation. Consistently, we found that dorsal raphe serotonin [5-hydroxytryptamine (5-HT)] neurons, which are involved in sleep-wake regulation, innervate nNOS+ neurons. Bath application of 5-HT hyperpolarizes nNOS+ neurons via 5-HT1A receptors. This hyperpolarization produces a reduction in firing rate and, occasionally, a switch from tonic to burst firing mode, thereby contrasting with the classic depolarizing effect of 5-HT on BLA GABAergic cells reported so far. Thus, nNOS+ cells are a distinct cell type of the amygdala that controls the activity of downstream neurons in both amygdaloid and extra-amygdaloid regions in a vigilance state-dependent fashion. Given the strong links among mood, sleep deprivation, and 5-HT, the recruitment of paracapsular nNOS+ neurons following high sleep pressure may represent an important mechanism in emotional regulation.
Stereotypic wheel running decreases cortical activity in mice.
Prolonged wakefulness is thought to gradually increase 'sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours.
Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. SIGNIFICANCE STATEMENT: A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire at high levels for 6 h in 2 different conditions: during active wake with exploration and during sleep. We find that neurons need more time OFF only after sustained firing in wake, suggesting that fatigue due to sustained firing alone is unlikely to account for the increase in SWA that follows sleep deprivation.
Learning by Association in Plants.
In complex and ever-changing environments, resources such as food are often scarce and unevenly distributed in space and time. Therefore, utilizing external cues to locate and remember high-quality sources allows more efficient foraging, thus increasing chances for survival. Associations between environmental cues and food are readily formed because of the tangible benefits they confer. While examples of the key role they play in shaping foraging behaviours are widespread in the animal world, the possibility that plants are also able to acquire learned associations to guide their foraging behaviour has never been demonstrated. Here we show that this type of learning occurs in the garden pea, Pisum sativum. By using a Y-maze task, we show that the position of a neutral cue, predicting the location of a light source, affected the direction of plant growth. This learned behaviour prevailed over innate phototropism. Notably, learning was successful only when it occurred during the subjective day, suggesting that behavioural performance is regulated by metabolic demands. Our results show that associative learning is an essential component of plant behaviour. We conclude that associative learning represents a universal adaptive mechanism shared by both animals and plants.
Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance.
Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals.SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod).
Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters.
It has been shown previously in Djungarian hamsters that the initial electroencephalography (EEG) slow-wave activity (power in the 0.5-4.0 Hz band; SWA) in non-rapid eye movement (NREM) sleep following an episode of daily torpor is consistently enhanced, similar to the SWA increase after sleep deprivation (SD). However, it is unknown whether the network mechanisms underlying the SWA increase after torpor and SD are similar. EEG slow waves recorded in the neocortex during sleep reflect synchronized transitions between periods of activity and silence among large neuronal populations. We therefore set out to investigate characteristics of individual cortical EEG slow waves recorded during NREM sleep after 4 h SD and during sleep after emergence from an episode of daily torpor in adult male Djungarian hamsters. We found that during the first hour after both SD and torpor, the SWA increase was associated with an increase in slow-wave incidence and amplitude. However, the slopes of single slow waves during NREM sleep were steeper in the first hour after SD but not after torpor, and, in contrast to sleep after SD, the magnitude of change in slopes after torpor was unrelated to the changes in SWA. Furthermore, slow-wave slopes decreased progressively within the first 2 h after SD, while a progressive increase in slow-wave slopes was apparent during the first 2 h after torpor. The data suggest that prolonged waking and torpor have different effects on cortical network activity underlying slow-wave characteristics, while resulting in a similar homeostatic sleep response of SWA. We suggest that sleep plays an important role in network homeostasis after both waking and torpor, consistent with a recovery function for both states.
Sleep-related memory consolidation in the psychosis spectrum phenotype.
Sleep and memory processing impairments range from mild to severe in the psychosis spectrum. Relationships between memory processing and sleep characteristics have been described for schizophrenia, including unaffected first-degree relatives, but they are less clear across other high-risk groups within the psychosis spectrum. In this study, we investigated high-risk individuals with accumulated risk-factors for psychosis and subthreshold symptoms. Out of 1898 screened individuals, 44 age- and sex-matched participants were sub-grouped into those with substantial environmental risk factors for psychosis and subthreshold psychotic symptoms (high-risk group) and those without these phenotypes (low-risk controls). Four groups (high/low risk, morning/evening training) were trained and tested in the laboratory for sustained attention, motor skill memory (finger-tapping task) and declarative memory (word-pair learning task) immediately after training, again after a night of EEG-recorded sleep at home or a period of daytime wakefulness, and again after 24 h from training. No differences in sustained attention or in memory consolidation of declarative and motor skill memory were found between groups for any time period tested. However, a group difference was found for rapid-eye movement (REM) sleep in relation to motor skill memory: the longer the total sleep time, particularly longer REM sleep, the greater the performance gain, which occurred only in high-risk individuals. In conclusion, our results suggest a gain in motor skill performance with sufficient sleep opportunity for longer REM sleep in high-risk individuals with subthreshold psychotic symptoms. Declarative memory did not benefit from sleep consolidation above or beyond that of the control group.
Lempel-Ziv complexity analysis of local field potentials in different vigilance states with different coarse-graining techniques
Analysis of electrophysiological signals recorded from the brain with Lempel-Ziv (LZ) complexity, a measure based on coarse-graining of the signal, can provide valuable insights into understanding brain activity. LZ complexity of local field potential signals recorded from the neocortex of 11 adult male Wistar-Kyoto rats in different vigilance states - waking, non-rapid-eye movement (NREM) and REM sleep - was estimated with different coarse-graining techniques (median, LZCm, and k-means, LZCkm). Furthermore, surrogate data were used to test the hypothesis that LZ complexity results reveal effects accounted for by temporal structure of the signal, rather than merely its frequency content. LZ complexity values were significantly lower in NREM sleep as compared to waking and REM sleep, for both real and surrogate signals. LZCkm and LZCm values were similar, although in NREM sleep the values deviated in some epochs, where signals also differed significantly in terms of temporal structure and spectral content. Thus, the interpretation of LZ complexity results should take into account the specific algorithm used to coarse-grain the signal. Moreover, the occurrence of high amplitude slow waves during NREM sleep determines LZ complexity to a large extent, but characteristics such as the temporal sequence of slow waves or cross-frequency interactions might also play a role. © Springer International Publishing Switzerland 2014.
Investigating sleep homeostasis with extracellular recording of multiunit activity from the neocortex in freely behaving rats
Cortical activity during sleep and waking is traditionally investigated with electroencephalography (EEG). The most distinctive feature of neocortical activity during sleep is the occurrence of EEG slow waves, arising from quasi-synchronous periods of activity and silence among cortical neurons. The EEG slow waves are regulated homeostatically: they are larger and have a higher incidence following long waking periods and decrease as a function of time spent asleep. Since intense early sleep seems to be important for restoration, understanding the cellular mechanisms underlying homeostatic regulation of sleep slow waves may appear crucial for understanding sleep function. While macrooscillations recorded with the EEG arise from synchronous activity and silence of large populations of cortical neurons, at present intracellular recording techniques do not allow monitoring the state of more than just a few cells at a time across spontaneous sleep-wake cycle in unrestrained animals. Here, we review a method for chronic recording of extracellular LFP and multiunit activity from the neocortex in freely moving rats. This technique is most useful for addressing cellular mechanisms of sleep homeostasis because it allows monitoring the activity of many cells simultaneously for many hours. The description of the surgical procedure is complemented with a detailed account of spike sorting, which is a crucial step in processing and interpreting extracellular waveforms. © 2011 Springer Science+Business Media, LLC.
Electrophysiological correlates of sleep homeostasis in freely behaving rats.
The electrical activity of the brain does not only reflect the current level of arousal, ongoing behavior, or involvement in a specific task but is also influenced by what kind of activity, and how much sleep and waking occurred before. The best marker of sleep-wake history is the electroencephalogram (EEG) spectral power in slow frequencies (slow-wave activity, 0.5-4 Hz, SWA) during sleep, which is high after extended wakefulness and low after consolidated sleep. While sleep homeostasis has been well characterized in various species and experimental paradigms, the specific mechanisms underlying homeostatic changes in brain activity or their functional significance remain poorly understood. However, several recent studies in humans, rats, and computer simulations shed light on the cortical mechanisms underlying sleep regulation. First, it was found that the homeostatic changes in SWA can be fully accounted for by the variations in amplitude and slope of EEG slow waves, which are in turn determined by the efficacy of corticocortical connectivity. Specifically, the slopes of sleep slow waves were steeper in early sleep compared to late sleep. Second, the slope of cortical evoked potentials, which is an established marker of synaptic strength, was steeper after waking, and decreased after sleep. Further, cortical long-term potentiation (LTP) was partially occluded if it was induced after a period of waking, but it could again be fully expressed after sleep. Finally, multiunit activity recordings during sleep revealed that cortical neurons fired more synchronously after waking, and less so after a period of consolidated sleep. The decline of all these electrophysiological measures-the slopes of slow waves and evoked potentials and neuronal synchrony-during sleep correlated with the decline of the traditional marker of sleep homeostasis, EEG SWA. Taken together, these data suggest that homeostatic changes in sleep EEG are the result of altered neuronal firing and synchrony, which in turn arise from changes in functional neuronal connectivity.
Sleep in Kcna2 knockout mice.
BACKGROUND: Shaker codes for a Drosophila voltage-dependent potassium channel. Flies carrying Shaker null or hypomorphic mutations sleep 3-4 h/day instead of 8-14 h/day as their wild-type siblings do. Shaker-like channels are conserved across species but it is unknown whether they affect sleep in mammals. To address this issue, we studied sleep in Kcna2 knockout (KO) mice. Kcna2 codes for Kv1.2, the alpha subunit of a Shaker-like voltage-dependent potassium channel with high expression in the mammalian thalamocortical system. RESULTS: Continuous (24 h) electroencephalograph (EEG), electromyogram (EMG), and video recordings were used to measure sleep and waking in Kcna2 KO, heterozygous (HZ) and wild-type (WT) pups (P17) and HZ and WT adult mice (P67). Sleep stages were scored visually based on 4-s epochs. EEG power spectra (0-20 Hz) were calculated on consecutive 4-s epochs. KO pups die by P28 due to generalized seizures. At P17 seizures are either absent or very rare in KO pups (< 1% of the 24-h recording time), and abnormal EEG activity is only present during the seizure. KO pups have significantly less non-rapid eye movement (NREM) sleep (-23%) and significantly more waking (+21%) than HZ and WT siblings with no change in rapid eye movement (REM) sleep time. The decrease in NREM sleep is due to an increase in the number of waking episodes, with no change in number or duration of sleep episodes. Sleep patterns, daily amounts of sleep and waking, and the response to 6 h sleep deprivation are similar in HZ and WT adult mice. CONCLUSION: Kv1.2, a mammalian homologue of Shaker, regulates neuronal excitability and affects NREM sleep.
Interhemispheric coherence of the sleep electroencephalogram in mice with congenital callosal dysgenesis.
Regional differences in the effect of sleep deprivation on the sleep electroencephalogram (EEG) may be related to interhemispheric synchronization. To investigate the role of the corpus callosum in interhemispheric EEG synchronization, coherence spectra were computed in mice with congenital callosal dysgenesis (B1) under baseline conditions and after 6-h sleep deprivation, and compared with the spectra of a control strain (C57BL/6). In B1 mice coherence was lower than in controls in all vigilance states. The level of coherence in each of the three totally acallosal mice was lower than in the mice with only partial callosal dysgenesis. The difference between B1 and control mice was present over the entire 0.5-25 Hz frequency range in non-rapid eye movement sleep (NREM sleep), and in all frequencies except for the high delta and low theta band (3-7 Hz) in rapid eye movement (REM) sleep and waking. In control mice, sleep deprivation induced a rise of coherence in the Delta band of NREM sleep in the first 2 h of recovery. This effect was absent in B1 mice with total callosal dysgenesis and attenuated in mice with partial callosal dysgenesis. In both strains the effect of sleep deprivation dissipated within 4 h. The results show that EEG synchronization between the hemispheres in sleep and waking is mediated to a large part by the corpus callosum. This applies also to the functional changes induced by sleep deprivation in NREM sleep. In contrast, interhemispheric synchronisation of theta oscillations in waking and REM sleep may be mediated by direct interhippocampal connections.
Long photoperiod restores the 24-h rhythm of sleep and EEG slow-wave activity in the Djungarian hamster (Phodopus sungorus).
Photoperiod influences the distribution of sleep and waking and electroencephalogram (EEG) power density in the Djungarian hamster. In an experimental procedure combining short photoperiod (SP) and low ambient temperature, the light-dark difference in the amount of sleep was decreased, and the changes in slow-wave activity (SWA) (mean EEG power density between 0.75 and 4.0 Hz) in nonrapid eye movement (NREM) sleep within 24 h were abolished. These findings, obtained in three different groups of animals, suggested that at the lower ambient temperature, the influence of the circadian clock on sleep-wake behavior was diminished. However, it remained unclear whether the changes were due to the photoperiod, ambient temperature, or both. Here, the authors show that EEG and electromyogram recordings in a single group of animals sequentially adapted to a short and long photoperiod (LP) at low ambient temperature (approximately 15 degrees C) confirm that EEG power is reduced in SP. Moreover, the nocturnal sleep-wake behavior and the changes in SWA in NREM sleep over 24 h were restored by returning the animals to LP and retaining ambient temperature at 15 degrees C. Therefore, the effects cannot be attributed to ambient temperature alone but are due to a combined effect of temperature and photoperiod. When the Djungarian hamster adapts to winter conditions, it appears to uncouple sleep regulation from the circadian clock.
Unilateral cortical spreading depression affects sleep need and induces molecular and electrophysiological signs of synaptic potentiation in vivo.
Cortical spreading depression (CSD) is an electrophysiological phenomenon first described by Leao in 1944 as a suppression of spontaneous electroencephalographic activity, traveling across the cerebral cortex. In vitro studies suggest that CSD may induce synaptic potentiation. One recent study also found that CSD is followed by a non-rapid eye movement (NREM) sleep duration increase, suggesting an increased need for sleep. Recent experiments in animals and humans show that the occurrence of synaptic potentiation increases subsequent sleep need as measured by larger slow wave activity (SWA) during NREM sleep, prompting the question whether CSD can affect NREM SWA. Here, we find that, in freely moving rats, local CSD induction increases corticocortical evoked responses and strongly induces brain derived neurotrophic factor (BDNF) in the affected cortical hemisphere but not in the contralateral one, consistent with synaptic potentiation in vivo. Moreover, for several hours after CSD, large slow waves occur in the affected hemisphere during rapid eye movement sleep and quiet waking but disappear during active exploration. Finally, we find that CSD increases NREM sleep duration and SWA, the latter specifically in the affected hemisphere. These effects are consistent with an increase in synaptic strength triggered by CSD, although nonphysiological phenomena associated with CSD may also play a role.
Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat.
To test the theory that sleep is a regional, use-dependent process, rats were subjected to unilateral sensory stimulation during waking. This was achieved by cutting the whiskers on one side, in order to reduce the sensory input to the contralateral cortex. The animals were kept awake for 6 h in an enriched environment to activate the cortex contralateral to the intact side. Whiskers are known to be represented in the barrel field of the contralateral somatosensory cortex and their stimulation during exploratory behavior results in a specific activation of the projection area. In the 6 h recovery period following sleep deprivation, spectral power of the nonrapid eye-movement (NREM) sleep EEG in the 0.75-6.0 Hz range exhibited an interhemispheric shift towards the cortex that was contralateral to the intact whiskers. The results support the theory that sleep has a regional, use-dependent facet.

