Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation

    3 July 2018

    Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson's disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients' usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait freezing but not background deficits in step length. Bilateral stimulation was more effective than unilateral. © 2012 The Author.

  • Parkinson's Disease tremor classification - A comparison between Support Vector Machines and neural networks

    3 July 2018

    Deep Brain Stimulation has been used in the study of and for treating Parkinson's Disease (PD) tremor symptoms since the 1980s. In the research reported here we have carried out a comparative analysis to classify tremor onset based on intraoperative microelectrode recordings of a PD patient's brain Local Field Potential (LFP) signals. In particular, we compared the performance of a Support Vector Machine (SVM) with two well known artificial neural network classifiers, namely a Multiple Layer Perceptron (MLP) and a Radial Basis Function Network (RBN). The results show that in this study, using specifically PD data, the SVM provided an overall better classification rate achieving an accuracy of 81% recognition. © 2012 Elsevier Ltd. All rights reserved.

  • Parkinsonian tremor identification with multiple local field potential feature classification.

    3 July 2018

    This paper explores the development of multi-feature classification techniques used to identify tremor-related characteristics in the Parkinsonian patient. Local field potentials were recorded from the subthalamic nucleus and the globus pallidus internus of eight Parkinsonian patients through the implanted electrodes of a Deep brain stimulation (DBS) device prior to device internalization. A range of signal processing techniques were evaluated with respect to their tremor detection capability and used as inputs in a multi-feature neural network classifier to identify the activity of Parkinsonian tremor. The results of this study show that a trained multi-feature neural network is able, under certain conditions, to achieve excellent detection accuracy on patients unseen during training. Overall the tremor detection accuracy was mixed, although an accuracy of over 86% was achieved in four out of the eight patients.

  • A robust strategy for decoding movements from deep brain local field potentials to facilitate brain machine interfaces

    3 July 2018

    A major thrust in brain machine interface (BMI) is to establish a robust, bi-directional direct link between the central nervous system (CNS) and artificial devices (e.g. medical implants, artificial organs, neural stimulators, robotic hands, etc.) for cybernetic interface and treatment of a range of neurodegenerative conditions. Significant effort has centered on support of motor control through external devices and direct stimulation through implanted electrodes in the brain, ideally supporting paralyzed or neurally damaged patients by bypassing damaged regions of the brain. The majority of neural decoding studies have focused on cortical areas for BMIs; however deep brain structures have also been involved in motor control. The subthalamic nucleus (STN) in the basal ganglia, for example, is involved in the preparation, execution and imagining of movements, and represents an unexplored alternative source with great potential for driving BMIs. The goal of this study is to establish this potential through decoding of deep brain local field potentials (LFPs) related to movement execution and laterality of visually cued movements. LFPs were recorded bilaterally from the STN through deep brain stimulation electrodes surgically implanted in patients with Parkinson's disease. The frequency dependent components of the LFPs were extracted using the wavelet packet transform. In each frequency component, signal features were extracted as the instantaneous power computed using the Hilbert transform. Based on these extracted features, a new feature selection strategy was developed to efficiently select the optimal feature subset. Two classifiers, the Bayesian and support vector machine (SVM) were implemented alongside this novel feature selection strategy, and evaluated using a cross-validation procedure. With optimised feature subset, average correct decoding of movement achieved 99.6±0.2% and 99.8±0.2% and subsequent laterality (left or right) classification reached 77.9±2.7% and 82.7±2.8% using the Bayesian and SVM classifier respectively. The work suggests that the neural activity in the basal ganglia can be used for controlling BMIs and holds great promise for a future generation of interfaces based in the STN. © 2012 IEEE.

  • The pathophysiology of brain swelling associated with subdural hemorrhage: the role of the trigeminovascular system.

    3 July 2018

    INTRODUCTION: This paper reviews the evidence in support of the hypothesis that the trigeminal system mediates brain swelling associated with subdural bleeding. The trigeminovascular system has been extensively studied in migraine; it may play an important but under-recognized role in the response to head trauma. Nerve fibers originating in trigeminal ganglion cells are the primary sensors of head trauma and, through their collateral innervation of the intracranial and dural blood vessels, are capable of inciting a cascade of vascular responses and brain swelling. The extensive trigeminal representation in the brainstem initiates and augments autonomic responses. Blood and tissue injury in the dura incite neurogenic inflammatory responses capable of sensitizing dural nerves and potentiating the response to trauma. DISCUSSION: The trigeminal system may provide the anatomo-physiological link between small-volume, thin subdural bleeds and swelling of the underlying brain. This physiology may help to explain the poorly understood phenomena of "second-impact syndrome," the infant response to subdural bleeding (the "big black brain"), as well as post-traumatic subdural effusions. Considerable age-specific differences in the density of dural innervation exist; age-specific responses of this innervation may explain differences in the brain's response to trauma in the young. An understanding of this pathophysiology is crucial to the development of intervention and treatment of these conditions. Antagonists to specific neuropeptides of the trigeminal system modify brain swelling after trauma and should be further explored as potential therapy in brain trauma and subdural bleeding.

  • Fusion of magnetometer and gradiometer sensors of MEG in the presence of multiplicative error.

    3 July 2018

    Novel neuroimaging techniques have provided unprecedented information on the structure and function of the living human brain. Multimodal fusion of data from different sensors promises to radically improve this understanding, yet optimal methods have not been developed. Here, we demonstrate a novel method for combining multichannel signals. We show how this method can be used to fuse signals from the magnetometer and gradiometer sensors used in magnetoencephalography (MEG), and through extensive experiments using simulation, head phantom and real MEG data, show that it is both robust and accurate. This new approach works by assuming that the lead fields have multiplicative error. The criterion to estimate the error is given within a spatial filter framework such that the estimated power is minimized in the worst case scenario. The method is compared to, and found better than, existing approaches. The closed-form solution and the conditions under which the multiplicative error can be optimally estimated are provided. This novel approach can also be employed for multimodal fusion of other multichannel signals such as MEG and EEG. Although the multiplicative error is estimated based on beamforming, other methods for source analysis can equally be used after the lead-field modification.

  • A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation.

    3 July 2018

    Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson's disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients' usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait freezing but not background deficits in step length. Bilateral stimulation was more effective than unilateral.

  • Identification of Thymosin β4 as an effector of Hand1-mediated vascular development.

    3 July 2018

    The bHLH transcription factor Hand1 (Heart and neural crest-derived transcript-1) has a fundamental role in cardiovascular development; however, the molecular mechanisms have not been elucidated. In this paper we identify Thymosin β4 (Tβ4/Tmsb4x), which encodes an actin monomer-binding protein implicated in cell migration and angiogenesis, as a direct target of Hand1. We demonstrate that Hand1 binds an upstream regulatory region proximal to the promoter of Tβ4 at consensus Thing1 and E-Box sites and identify both activation and repression of Tβ4 by Hand1, through direct binding within either non-canonical or canonical E-boxes, providing new insight into gene regulation by bHLH transcription factors. Hand1-mediated activation of Tβ4 is essential for yolk sac vasculogenesis and embryonic survival, and administration of synthetic TB4 partially rescues yolk sac capillary plexus formation in Hand1-null embryos. Thus, we identify an in vivo downstream target of Hand1 and reveal impaired yolk sac vasculogenesis as a primary cause of early embryonic lethality following loss of this critical bHLH factor.

  • Amniotic fluid stem cells are cardioprotective following acute myocardial infarction.

    3 July 2018

    In recent years, various types of stem cells have been characterized and their potential for cardiac regeneration has been investigated. We have previously described the isolation of broadly multipotent cells from amniotic fluid, defined as amniotic fluid stem (AFS) cells. The aim of this study was to investigate the therapeutic potential of human AFS cells (hAFS) in a model of acute myocardial infarction. Wistar rats underwent 30 min of ischemia by ligation of the left anterior descending coronary artery, followed by administration of hAFS cells and 2 h of reperfusion. Infarct size was assessed by 2,3,5-triphenyltetrazolium chloride staining and planimetry. hAFS cells were also analyzed by enzyme-linked immunosorbent assay to detect secretion of putative paracrine factors, such as the actin monomer-binding protein thymosin β4 (Tβ4). The systemic injection of hAFS cells and their conditioned medium (hAFS-CM) was cardioprotective, improving myocardial cell survival and decreasing the infarct size from 53.9%±2.3% (control animals receiving phosphate-buffered saline injection) to 40.0%±3.0% (hAFS cells) and 39.7%±2.5% (hAFS-CM, P<0.01). In addition, hAFS cells were demonstrated to secrete Tβ4, previously shown to be both cardioprotective and proangiogenic. Our results suggest that AFS cells have therapeutic potential in the setting of acute myocardial infarction, which may be mediated through paracrine effectors such as Tβ4. Therefore, AFS cells might represent a novel source for cell therapy and cell transplantation strategies in repair following ischemic heart disease, with a possible paracrine mechanism of action and a potential molecular candidate for acute cardioprotection.

  • Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart.

    3 July 2018

    Ischemic heart disease complicated by coronary artery occlusion causes myocardial infarction (MI), which is the major cause of morbidity and mortality in humans (http://www.who.int/cardiovascular_diseases/resources/atlas/en/index.html). After MI the human heart has an impaired capacity to regenerate and, despite the high prevalence of cardiovascular disease worldwide, there is currently only limited insight into how to stimulate repair of the injured adult heart from its component parts. Efficient cardiac regeneration requires the replacement of lost cardiomyocytes, formation of new coronary blood vessels, and appropriate modulation of inflammation to prevent maladaptive remodeling, fibrosis/scarring, and consequent cardiac dysfunction. Here we show that thymosin beta4 (Tbeta4) promotes new vasculature in both the intact and injured mammalian heart. We demonstrate that limited EPDC-derived endothelial-restricted neovascularization constitutes suboptimal "endogenous repair," following injury, which is significantly augmented by Tbeta4 to increase and stabilize the vascular plexus via collateral vessel growth. As such, we identify Tbeta4 as a facilitator of cardiac neovascularization and highlight adult EPDCs as resident progenitors which, when instructed by Tbeta4, have the capacity to sustain the myocardium after ischemic damage.

  • Riley Group

    10 July 2016

  • Robbins Group

    1 May 2018

    Human physiology: Effects of hypoxia and exercise on respiratory, cardiovascular and metabolic function

  • Smart Group

    10 July 2016

    Development, homeostasis and regeneration of the cardiovascular system

  • Srinivas Group

    10 July 2016

    Patterning and morphogenesis of the early mammalian embryo

  • Stein Group

    16 September 2013

    Visuomotor control in movement disorders and developmental dyslexia

  • Swietach Group

    10 July 2016

    Acid handling and signalling in the heart and in cancer

  • Szele Group

    10 July 2016

    We study postnatal and adult mammalian brain stem cells to uncover fundamental developmental mechanisms and disease pathogenesis.

  • Taylor Group

    10 July 2016

    Axon Growth and Guidance in the Developing and Regenerating Central Nervous System

  • Tyler Group

    10 July 2016

    Development and Application of Cardiac Magnetic Resonance Imaging and Spectroscopy

  • Waddell Group

    10 July 2016

    Memory, motivation and individuality