Search results
Found 12666 matches for
Hyperspectral unmixing for Raman spectroscopy via physics-constrained autoencoders.
Raman spectroscopy is widely used across scientific domains to characterize the chemical composition of samples in a nondestructive, label-free manner. Many applications entail the unmixing of signals from mixtures of molecular species to identify the individual components present and their proportions, yet conventional methods for chemometrics often struggle with complex mixture scenarios encountered in practice. Here, we develop hyperspectral unmixing algorithms based on autoencoder neural networks, and we systematically validate them using both synthetic and experimental benchmark datasets created in-house. Our results demonstrate that unmixing autoencoders provide improved accuracy, robustness, and efficiency compared to standard unmixing methods. We also showcase the applicability of autoencoders to complex biological settings by showing improved biochemical characterization of volumetric Raman imaging data from a monocytic cell.
Biofabrication and biomanufacturing in Ireland and the UK
As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems. The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare, propelled by cutting-edge research and development. Concentrating on the production of biologically functional products for use in drug delivery, in vitro models, and tissue engineering, research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability, affordability, and healthcare system benefits. Graphic abstract: (Figure presented.)
Whole-brain annotation and multi-connectome cell typing of Drosophila.
The fruit fly Drosophila melanogaster has emerged as a key model organism in neuroscience, in large part due to the concentration of collaboratively generated molecular, genetic and digital resources available for it. Here we complement the approximately 140,000 neuron FlyWire whole-brain connectome1 with a systematic and hierarchical annotation of neuronal classes, cell types and developmental units (hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the partial hemibrain connectome2, and 4,581 are new types, mostly from brain regions outside the hemibrain subvolume. Although nearly all hemibrain neurons could be matched morphologically in FlyWire, about one-third of cell types proposed for the hemibrain could not be reliably reidentified. We therefore propose a new definition of cell type as groups of cells that are each quantitatively more similar to cells in a different brain than to any other cell in the same brain, and we validate this definition through joint analysis of FlyWire and hemibrain connectomes. Further analysis defined simple heuristics for the reliability of connections between brains, revealed broad stereotypy and occasional variability in neuron count and connectivity, and provided evidence for functional homeostasis in the mushroom body through adjustments of the absolute amount of excitatory input while maintaining the excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open-source toolchain for brain-scale comparative connectomics.
Neuronal wiring diagram of an adult brain.
Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative1-6, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses7 between 139,255 neurons reconstructed from an adult female Drosophila melanogaster8,9. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities10-12. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.
Differential coding of absolute and relative aversive value in the Drosophila brain.
Animals use prior experience to assign absolute (good or bad) and relative (better or worse) value to new experience. These learned values guide appropriate later decision making. Even though our understanding of how the valuation system computes absolute value is relatively advanced, the mechanistic underpinnings of relative valuation are unclear. Here, we uncover mechanisms of absolute and relative aversive valuation in Drosophila. Three types of punishment-sensitive dopaminergic neurons (DANs) respond differently to electric shock intensity. During learning, these punishment-sensitive DANs drive intensity-scaled plasticity at their respective mushroom body output neuron (MBON) connections to code absolute aversive value. In contrast, by comparing the absolute value of current and previous aversive experiences, the MBON-DAN network can code relative aversive value by using specific punishment-sensitive DANs and recruiting a specific subtype of reward-coding DANs. Behavioral and physiological experiments revealed that a specific subtype of reward-coding DAN assigns a "better than" value to the lesser of the two aversive experiences. This study therefore highlights how appetitive-aversive system interactions within the MB network can code and compare sequential aversive experiences to learn relative aversive value.
Compensatory enhancement of input maintains aversive dopaminergic reinforcement in hungry Drosophila.
Hungry animals need compensatory mechanisms to maintain flexible brain function, while modulation reconfigures circuits to prioritize resource seeking. In Drosophila, hunger inhibits aversively reinforcing dopaminergic neurons (DANs) to permit the expression of food-seeking memories. Multitasking the reinforcement system for motivation potentially undermines aversive learning. We find that chronic hunger mildly enhances aversive learning and that satiated-baseline and hunger-enhanced learning require endocrine adipokinetic hormone (AKH) signaling. Circulating AKH influences aversive learning via its receptor in four neurons in the ventral brain, two of which are octopaminergic. Connectomics revealed AKH receptor-expressing neurons to be upstream of several classes of ascending neurons, many of which are presynaptic to aversively reinforcing DANs. Octopaminergic modulation of and output from at least one of these ascending pathways is required for shock- and bitter-taste-reinforced aversive learning. We propose that coordinated enhancement of input compensates for hunger-directed inhibition of aversive DANs to preserve reinforcement when required.
Classical Conditioning of Adult Drosophila.
Olfactory classical conditioning paradigms have been extensively used since the early 1970s to apply genetic approaches to the study of memory in Drosophila. Over the intervening years, advances in genetics have largely changed the focus of studies from the role of single genes in memory to investigation of memory-relevant neuronal circuits. However, the original behavioral paradigms have remained largely unaltered, besides investigators making a few useful tweaks to the training and testing apparatus and modifications to the operating procedures. In this protocol, we provide the reader with a detailed description of the manufacture and assembly of a typical T-maze apparatus, where populations of adult flies can be trained and their odor memory tested later, by giving them a binary choice between the two trained odors. We describe how variations of the training apparatus permit both aversive (odor-shock) and appetitive (odor-sugar) memories to be studied. In addition, we describe a recent modification of the apparatus and protocol that permits study of multisensory (color and odor) aversive and appetitive learning. Control assays for sensory acuity and locomotion are also included.
Twists to Classical Conditioning of Adult Drosophila.
Memory has been extensively studied in Drosophila since the early 1970s. Straightforward aversive and appetitive conditioning paradigms train populations of flies to associate the pairing of one of two odors with either punishment or reward. After training, the flies show either preferential avoidance or approach behavior, to the appropriate odor, when given a choice between the two odors in a simple T-maze apparatus. These basic experimental approaches have proven useful in understanding the genetic, molecular, cellular, and neuronal network bases of various valence-specific memories in the fly brain. In addition, numerous modifications to these assays have permitted the study of a broad range of memory-related phenomena. Labile short-term avoidance and approach memories can be readily distinguished from more stable "consolidated" long-term memory equivalents. Prior or subsequent experience of the training cues, and manipulations of the flies' condition, have revealed how parallel competing memories and incompatible states can temporarily interfere with memory retrieval, providing insight into mechanisms of forgetting. Recent studies have also modified the training and testing apparatus to allow simultaneous presentation of odors and colors, providing insight into mechanisms of multisensory learning.
A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord
The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. Cells could also be assigned to specific neuromeres using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.
Impaired striatal glutathione-ascorbate metabolism induces transient dopamine increase and motor dysfunction.
Identifying initial triggering events in neurodegenerative disorders is critical to developing preventive therapies. In Huntington's disease (HD), hyperdopaminergia-probably triggered by the dysfunction of the most affected neurons, indirect pathway spiny projection neurons (iSPNs)-is believed to induce hyperkinesia, an early stage HD symptom. However, how this change arises and contributes to HD pathogenesis is unclear. Here, we demonstrate that genetic disruption of iSPNs function by Ntrk2/Trkb deletion in mice results in increased striatal dopamine and midbrain dopaminergic neurons, preceding hyperkinetic dysfunction. Transcriptomic analysis of iSPNs at the pre-symptomatic stage showed de-regulation of metabolic pathways, including upregulation of Gsto2, encoding glutathione S-transferase omega-2 (GSTO2). Selectively reducing Gsto2 in iSPNs in vivo effectively prevented dopaminergic dysfunction and halted the onset and progression of hyperkinetic symptoms. This study uncovers a functional link between altered iSPN BDNF-TrkB signalling, glutathione-ascorbate metabolism and hyperdopaminergic state, underscoring the vital role of GSTO2 in maintaining dopamine balance.
The therapeutic use of clonal neural stem cells in experimental Parkinson´s disease.
BACKGROUND: Parkinson´s disease (PD), the second most common neurodegenerative disease in the world, is characterized by the death or impairment of dopaminergic neurons (DAn) in the substantia nigra pars compacta and dopamine depletion in the striatum. Currently, there is no cure for PD, and treatments only help to reduce the symptoms of the disease, and do not repair or replace the DAn damaged or lost in PD. Cell replacement therapy (CRT) seeks to relieve both pathological and symptomatic PD manifestations and has been shown to have beneficial effects in experimental PD models as well as in PD patients, but an apt cell line to be used in the treatment of PD has yet to be established. The purpose of this study was to examine the effects of the transplantation of hVM1 clone 32 cells, a bankable line of human neural stem cells (hNSCs), in a PD mouse model at four months post-transplant. METHODS: Adult (five month-old) C57BL/6JRccHsd male mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and subsequently transplanted with hVM1 clone 32 cells, or buffer, in the left striatum. Four months post-transplant, behavioral effects were explored using the open field and paw print tests, and histological analyses were performed. RESULTS: Transplantation of hVM1 clone 32 cells rescued dopaminergic nigrostriatal populations in adult Parkinsonian mice. Motor and neurological deterioration were observed in buffer-treated mice, the latter of which had a tendency to improve in hNSC-transplanted mice. Detection of mast cell migration to the superficial cervical lymph nodes in cell-transplanted mice denoted a peripheral effect. Transplantation of hNSCs also rescued neuroblast neurogenesis in the subgranular zone, which was correlated with dopaminergic recovery and is indicative of local recovery mechanisms. CONCLUSIONS: In this proof-of-concept study, the transplantation of hVM1 clone 32 cells provided neuroprotection in adult Parkinsonian mice by restoring the dopaminergic nigrostriatal pathway and hippocampal neurogenesis, demonstrating the efficacy of cell replacement therapy as a treatment for PD.
A Rab6 to Rab11 transition is required for dense-core granule and exosome biogenesis in Drosophila secondary cells.
Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane-associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.
A Light-Controlled Allosteric Modulator Unveils a Role for mGlu4 Receptors During Early Stages of Ischemia in the Rodent Cerebellar Cortex.
Metabotropic glutamate receptors (mGlus) are G Protein coupled-receptors that modulate synaptic transmission and plasticity in the central nervous system. Some act as autoreceptors to control neurotransmitter release at excitatory synapses and have become attractive targets for drug therapy to treat certain neurological disorders. However, the high degree of sequence conservation around the glutamate binding site makes the development of subtype-specific orthosteric ligands difficult to achieve. This problem can be circumvented by designing molecules that target specific less well conserved allosteric sites. One such allosteric drug, the photo-switchable compound OptoGluNAM4.1, has been recently employed to reversibly inhibit the activity of metabotropic glutamate 4 (mGlu4) receptors in cell cultures and in vivo. We studied OptoGluNAM4.1 as a negative modulator of neurotransmission in rodent cerebellar slices at the parallel fiber - Purkinje cell synapse. Our data show that OptoGluNAM4.1 antagonizes pharmacological activation of mGlu4 receptors in a fully reversible and photo-controllable manner. In addition, for the first time, this new allosteric modulator allowed us to demonstrate that, in brain slices from the rodent cerebellar cortex, mGlu4 receptors are endogenously activated in excitotoxic conditions, such as the early phases of simulated cerebellar ischemia, which is associated with elevated levels of extracellular glutamate. These findings support OptoGluNAM4.1 as a promising new tool for unraveling the role of mGlu4 receptors in the central nervous system in physio-pathological conditions.
Comparative functional expression of nAChR subtypes in rodent DRG neurons.
We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.
Excitatory GluN1/GluN3A glycine receptors (eGlyRs) in brain signaling.
GluN3A is a glycine-binding subunit belonging to the NMDA receptor (NMDAR) family that can assemble with GluN1 subunits to form unconventional NMDARs insensitive to glutamate and activated by glycine only. The existence of such excitatory glycine receptors (eGlyRs) in the central nervous system (CNS) has long remained elusive. Recently, eGlyRs have been identified in specific brain regions, where they represent a novel neuronal signaling modality by which extracellular glycine tunes neuronal excitability, circuit function, and behavior. In this review, we summarize the emerging knowledge regarding these underappreciated receptors. The existence of eGlyRs reshapes current understanding of NMDAR diversity and of glycinergic signaling, previously thought to be primarily inhibitory. Given that GluN3A expression is concentrated in brain regions regulating emotional responses, eGlyRs are potential new targets of therapeutic interest in neuropsychiatry.
GluD1 binds GABA and controls inhibitory plasticity.
Fast synaptic neurotransmission in the vertebrate central nervous system relies primarily on ionotropic glutamate receptors (iGluRs), which drive neuronal excitation, and type A γ-aminobutyric acid receptors (GABAARs), which are responsible for neuronal inhibition. However, the GluD1 receptor, an iGluR family member, is present at both excitatory and inhibitory synapses. Whether and how GluD1 activation may affect inhibitory neurotransmission is unknown. In this work, by using a combination of biochemical, structural, and functional analyses, we demonstrate that GluD1 binds GABA, a previously unknown feature of iGluRs. GluD1 activation produces long-lasting enhancement of GABAergic synaptic currents in the adult mouse hippocampus through a non-ionotropic mechanism that is dependent on trans-synaptic anchoring. The identification of GluD1 as a GABA receptor that controls inhibitory synaptic plasticity challenges the classical dichotomy between glutamatergic and GABAergic receptors.
Native metabotropic glutamate receptor 4 depresses synaptic transmission through an unusual Gαq transduction pathway.
In cerebellar cortex, mGlu4 receptors located on parallel fibers play an essential role in normal motor function, but the molecular mechanisms involved are not yet completely understood. Using a strategy combining biochemical and electrophysiological approaches in the rodent cerebellum, we demonstrate that presynaptic mGlu4 receptors control synaptic transmission through an atypical activation of Gαq proteins. First, the Gαq subunit, PLC and PKC signaling proteins present in cerebellar extracts are retained on affinity chromatography columns grafted with different sequences of the cytoplasmic domain of mGlu4 receptor. The i2 loop and the C terminal domain were used as baits, two domains that are known to play a pivotal role in coupling selectivity and efficacy. Second, in situ proximity ligation assays show that native mGlu4 receptors and Gαq subunits are in close physical proximity in cerebellar cortical slices. Finally, electrophysiological experiments demonstrate that the molecular mechanisms underlying mGlu4 receptor-mediated inhibition of transmitter release at cerebellar Parallel Fiber (PF) - Molecular Layer Interneuron (MLI) synapses involves the Gαq-PLC signaling pathway. Taken together, our results provide compelling evidence that, in the rodent cerebellar cortex, mGlu4 receptors act by coupling to the Gαq protein and PLC effector system to reduce glutamate synaptic transmission.
Impulsivity trait in the early symptomatic BACHD transgenic rat model of Huntington disease.
Impulsivity trait was characterized in 3-5 months old BACHD rats, a transgenic model of Huntington disease, using (1) the delay discounting task to assess cognitive/choice impulsivity, and (2) the Differential Reinforcement of Low Rate of Responding task to evaluate motor/action impulsivity. Transgenic animals showed a high level of choice impulsivity and, to a lesser extent, action impulsivity. Our results provide the first evidence that the transgenic BACHD rat (TG5 line) displays impulsivity disorder as early as 3 months old, as described in early symptomatic HD patients, thus adding to the face validity of the rat model.
Allosteric nanobodies uncover a role of hippocampal mGlu2 receptor homodimers in contextual fear consolidation.
Antibodies have enormous therapeutic and biotechnology potential. G protein-coupled receptors (GPCRs), the main targets in drug development, are of major interest in antibody development programs. Metabotropic glutamate receptors are dimeric GPCRs that can control synaptic activity in a multitude of ways. Here we identify llama nanobodies that specifically recognize mGlu2 receptors, among the eight subtypes of mGluR subunits. Among these nanobodies, DN10 and 13 are positive allosteric modulators (PAM) on homodimeric mGlu2, while DN10 displays also a significant partial agonist activity. DN10 and DN13 have no effect on mGlu2-3 and mGlu2-4 heterodimers. These PAMs enhance the inhibitory action of the orthosteric mGlu2/mGlu3 agonist, DCG-IV, at mossy fiber terminals in the CA3 region of hippocampal slices. DN13 also impairs contextual fear memory when injected in the CA3 region of hippocampal region. These data highlight the potential of developing antibodies with allosteric actions on GPCRs to better define their roles in vivo.