Search results
Found 12616 matches for
MicroRNA-210 Enhances Cell Survival and Paracrine Potential for Cardiac Cell Therapy While Targeting Mitophagy
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key to enhancing their regenerative capacity. We demonstrate that microRNA-210 (miR-210), known for its role in hypoxic adaptation, significantly improves CPC survival by inhibiting apoptosis through the downregulation of Casp8ap2, a ~40% reduction in caspase activity, and a ~90% decrease in DNA fragmentation. Contrary to the expected induction of Bnip3-dependent mitophagy by hypoxia, miR-210 did not upregulate Bnip3, indicating a distinct anti-apoptotic mechanism. Instead, miR-210 reduced markers of mitophagy and increased mitochondrial biogenesis and oxidative metabolism, suggesting a role in metabolic reprogramming. Furthermore, miR-210 enhanced the secretion of paracrine growth factors from CPCs, with a ~1.6-fold increase in the release of stem cell factor and of insulin growth factor 1, which promoted in vitro endothelial cell proliferation and cardiomyocyte survival. These findings elucidate the multifaceted role of miR-210 in CPC biology and its potential to enhance cell-based therapies for myocardial repair by promoting cell survival, metabolic adaptation, and paracrine signalling.
Y12C mutation disrupts IMPDH cytoophidia and alters cancer metabolism.
Guanosine triphosphate (GTP) is a building block for DNA and RNA, and plays a pivotal role in various cellular functions, serving as an energy source, enzyme cofactor and a key component of signal transduction. The activity of the rate-limiting enzyme in de novo GTP synthesis, inosine monophosphate dehydrogenase (IMPDH), is regulated by nucleotide binding. Recent studies have illuminated that IMPDH octamers can assemble into linear polymers, adding another dimension to its enzymatic regulation. This polymerisation reduces IMPDH's sensitivity to the inhibitory effects of GTP binding, thereby augmenting its activity under conditions with elevated GTP levels. Within cells, IMPDH polymers may cluster to form the distinctive structure known as the cytoophidium, which is postulated to reflect the cellular demand for increased GTP concentrations. Nevertheless, the functional significance of IMPDH polymerisation in in vivo metabolic regulation remains unclear. In this study, we report the widespread presence of IMPDH cytoophidia in various human cancer tissues. Utilising the ABEmax base editor, we introduced a Y12C point mutation into IMPDH2 across multiple cancer cell lines. This mutation disrupts the polymerisation interface of IMPDH and prevents cytoophidium assembly. In some cancer xenografts, the absence of IMPDH polymers led to a downregulation of IMPDH, as well as the glycolytic and pentose phosphate pathways. Furthermore, mutant HeLa-cell-derived xenografts were notably smaller than their wild-type counterparts. Our data suggest that IMPDH polymerisation and cytoophidium assembly could be instrumental in modulating metabolic homeostasis in certain cancers, offering insights into the clinical relevance of IMPDH cytoophidium.
Cognitive and neuropsychiatric profiles distinguish atypical parkinsonian syndromes.
Atypical parkinsonian syndromes are distinguished from Parkinson's disease by additional neurological signs and characteristic underlying neuropathology. However, they can be diagnostically challenging, rapidly progressive, and are often diagnosed late in disease course. Their different demographic features and prognoses are well studied, but the accompanying cognitive and psychiatric features may also facilitate diagnosis. Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) may cause cognitive and behavioural manifestations that overlap with frontotemporal dementia, including non-fluent aphasia, apathy and impulsivity. Clinical diagnostic criteria have limited sensitivity, with pathologically confirmed PSP often having presented an initial clinical syndrome other than PSP-Richardson's syndrome. Here we integrate cross-sectional multi-centre baseline data from the PROSPECT and Oxford Discovery cohorts. This allowed us to compare cognitive and psychiatric features across a total of 1138 people with PSP, CBS, multiple-system atrophy (MSA), and idiopathic Parkinson's disease (PD). Data from the different cohorts were harmonised and compared using multiple linear regression. There were five key results. 1. Different syndromes showed distinctive cognitive profiles, using readily applicable 'bedside' screening tools. Frontal executive dysfunction was most evident in PSP, visuospatial deficits in CBS, with milder deficits in memory and executive function in MSA, as compared with PD. 2. The most prevalent neuropsychiatric features were depression and anxiety in CBS, apathy in PSP, with sleep disturbances common in PD. As expected, apathy correlated positively with impulsivity across all disorders. Neuropsychiatric features were generally better at discriminating between atypical parkinsonian syndromes than were the cognitive domains. 3. Both cognitive function and motor severity declined with disease duration, and motor function predicted cognition in PSP, CBS and PD but not in MSA, suggesting that in MSA cognitive and motor dysfunction are decoupled. 4. Plasma neurofilament light chain (NFL) levels, measured in a subset of patients, correlated with cognitive deficits in PSP, but not motor deficits. 5. Cognitive deficits contributed to the impairment in activities of daily living after controlling for motor severity, with every two points on the MoCA worsening the Schwab and England score by one point. In anticipation of future neuroprotective therapies, we present a classifier to improve diagnostic accuracy for atypical parkinsonian syndromes in vivo. Longitudinal cohort studies with resources for neuropathological gold-standard diagnosis remain important to validate better diagnostic tools for people with PSP, CBD, MSA and atypical parkinsonism.
Hyperpolarized 13C-MRS can Quantify Lactate Production and Oxidative PDH Flux in Murine Skeletal Muscle During Exercise.
Existing techniques for the non-invasive in vivo study of dynamic changes in skeletal muscle metabolism are subject to several limitations, for example, poor signal-to-noise ratios which result in long scan times and low temporal resolution. Hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopy (HP-MRS) allows the real-time visualization of in vivo metabolic processes and has been used extensively to study cardiac metabolism, but has not resolved oxidative phosphorylation in contracting skeletal muscle. Combining HP-MRS with an in vivo muscle hindlimb electrical stimulation protocol that modelled voluntary exercise to exhaustion allows the simultaneous real-time assessment of both metabolism and function. The aim of this work was to validate the sensitivity of the method by assessing pyruvate dehydrogenase (PDH) flux in resting vs. working muscle: measuring the production of bicarbonate (H13CO3 -), a byproduct of the PDH-catalysed conversion of [1-13C]pyruvate to acetyl-CoA. Mice (n = 6) underwent two hyperpolarized [1-13C]pyruvate injections with 13C MR spectra obtained from the gastrocnemius muscle to measure conversion of pyruvate to lactate and bicarbonate, one before the stimulation protocol with the muscle in a resting state and one during the stimulation protocol. The muscle force generated during stimulation was also measured, and 13C MRS undertaken at a point of ~50% fatigue. We observed an increase in the bicarbonate/pyruvate ratio by a factor of ~1.5×, in the lactate/pyruvate ratio of ~2.7×, together with an increase in total carbon (~1.5×) that we attribute to perfusion. This demonstrates profound differences in metabolism between the resting and exercising states. These data therefore serve as preliminary evidence that hyperpolarized 13C MRS is an effective in vivo probe of PDH flux in exercising skeletal muscle and could be used in future studies to examine changes in muscle metabolism in states of disease and altered nutrition.
The transcription factor Traffic jam orchestrates the somatic piRNA pathway in Drosophila ovaries
The PIWI-interacting RNA (piRNA) pathway is essential for transposable element (TE) silencing in animal gonads. While the transcriptional regulation of piRNA pathway components in germ cells has been documented in mice and flies, their control in somatic cells of Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), the Drosophila ortholog of large Maf transcription factors in mammals, is a master regulator of the somatic piRNA pathway. Tj binds to regulatory regions of somatic piRNA factors and the major piRNA cluster flamenco, which carries a Tj-bound enhancer downstream of its promoter. Depletion of Tj in somatic follicle cells causes downregulation of piRNA factors, loss of flamenco expression, and derepression of gypsy-family TEs. We propose that the arms race between the host and TEs led to the co-evolution of promoters in piRNA pathway genes as well as TE regulatory regions, which both rely on a shared transcription factor.
An orexin-sensitive subpopulation of layer 6 neurons regulates cortical excitability and anxiety behaviour.
Cortical layer 6 neurons are the only projection neuron population in the cortical mantle known to electrophysiologically respond to orexin-a neuropeptide involved in cortical arousal and emotive behaviour. These neurons exhibit extensive intercortical and thalamic projections, yet the exact mechanisms underlying these responses are not fully understood. We hypothesize that cortical circuits activated by orexin sensitive L6 neurons in the medial prefrontal cortex (mPFC) are responsible for detecting salient features of sensory stimuli and are therefore involved in regulating emotional states. Here, we show that Drd1a-Cre+ neurons in the mPFC are selectively sensitive to orexin and gate the activation of the prefrontal network in vivo. Moreover, we demonstrated that chronically "silencing" this subpopulation of L6 neurons (Drd1a-Cre+/+:Snap25fl/fl) across the cortical mantle from birth abolishes the orexin-induced prefrontal activation. Consequently, the chronic silencing of these neurons had strong anxiolytic effects on several anxiety-related behavioural paradigms, indicating that orexin-responsive L6 neurons modulate emotional states and may be a substrate for anxiety regulation.
Association of cholesterol and glycemic state biomarkers with phenotypic variation and Parkinson's disease progression: The Oxford Discovery cohort.
BackgroundParkinson's disease (PD) has marked phenotypic variability. Increased lipids have been suggested as being neuroprotective whilst hyperglycemia may increase α-synuclein aggregation.ObjectiveWe have tested whether high total cholesterol and high-density lipoprotein cholesterol (HDL-C) and low levels of fructosamine are associated with better PD phenotypes and predict less rapid progressionMethodsNon-fasting serum HDL-C, total cholesterol, and fructosamine were measured at baseline in 866 patients with early PD (median duration, 0.96; IQR, 0.43-1.98 years) from the Oxford Discovery cohort. These biomarkers were compared against our data-derived PD subtypes using multinomial logistic regression. We used multilevel models to predict longitudinal motor and non-motor outcomes (e.g., cognition, mood).ResultsHDL-C and total cholesterol differed across baseline PD phenotype clusters, with reduced levels associated with the most severe motor and non-motor phenotypes (psychological well-being, cognitive impairment, REM sleep behavior disorder, and daytime sleepiness). Higher HDL-C and total cholesterol, although the latter was attenuated after adjustment for statin use, were associated with better baseline activities of daily living (e.g., UPDRS-II score with 1 SD increase in HDL-C -0.74, 95%CI -1.22 to -0.26, p = 0.002) and non-motor features. Neither predicted the rate of motor or non-motor progression. Fructosamine levels were not associated with phenotypic variability or rate of disease progression.ConclusionsHypercholesterolemia was associated with a better motor/non-motor disease subtype and daily living impairment at presentation, but did not predict longitudinal change. Future research needs to determine if these associations are causally related or secondary to disease onset by examining prodromal subjects.
Heritable maintenance of chromatin modifications confers transcriptional memory of interferon-γ signaling.
Interferon-γ (IFNγ) transiently activates genes related to inflammation and innate immunity. A subset of targets retain a mitotically heritable memory of prior IFNγ exposure, resulting in hyperactivation upon re-exposure through poorly understood mechanisms. Here, we discover that the transcriptionally permissive chromatin marks H3K4me1, H3K14ac and H4K16ac are established during IFNγ priming and are selectively maintained on a cluster of guanylate-binding protein (GBP) genes in dividing human cells in the absence of transcription. The histone acetyltransferase KAT7 is required for H3K14ac deposition at GBP genes and for accelerated GBP reactivation upon re-exposure to IFNγ. In naive cells, the GBP cluster is maintained in a low-level repressive chromatin state, marked by H3K27me3, limiting priming through a PRC2-dependent mechanism. Unexpectedly, IFNγ priming results in transient accumulation of this repressive mark despite active gene expression. However, during the memory phase, H3K27 methylation is selectively depleted from primed GBP genes, facilitating hyperactivation. Furthermore, we identified a cis-regulatory element that forms transient, long-range contacts across the GBP cluster and acts as a repressor, curbing hyperactivation of previously IFNγ-primed cells. Our results provide insight into the chromatin basis for the long-term transcriptional memory of IFNγ signaling, which might contribute to enhanced innate immunity.
Connectivity related to major brain functions in Alzheimer disease progression: microstructural properties of the cingulum bundle and its subdivision using diffusion-weighted MRI.
BACKGROUND: The cingulum bundle is a brain white matter fasciculus associated with the cingulate gyrus. It connects areas from the temporal to the frontal lobe. It is composed of fibers with different terminations, lengths, and structural properties, related to specific brain functions. We aimed to automatically reconstruct this fasciculus in patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) and to assess whether trajectories have different microstructural properties in relation to dementia progression. METHODS: Multi-shell high angular resolution diffusion imaging-HARDI image datasets from the "Alzheimer's Disease Neuroimaging Initiative"-ADNI repository of 10 AD, 18 MCI, and 21 cognitive normal (CN) subjects were used to reconstruct three subdivisions of the cingulum bundle, using a probabilistic approach, combined with measurements of diffusion tensor and neurite orientation dispersion and density imaging metrics in each subdivision. RESULTS: The subdivisions exhibit different pathways, terminations, and structural characteristics. We found differences in almost all the diffusivity metrics among the subdivisions (p
Auditory training alters the cortical representation of complex sounds.
Auditory learning is supported by long-term changes in the neural processing of sound. We examined these task-depend changes in auditory cortex by mapping neural sensitivity to timbre, pitch and location cues in cues in trained (n = 5), and untrained control female ferrets (n = 5). Trained animals either identified vowels in a two-alternative forced choice task (n = 3) or discriminated when a repeating vowel changed in identity or pitch (n = 2). Neural responses were recorded under anesthesia in two primary auditory cortical fields and two tonotopically organized non-primary fields. In trained animals, the overall sensitivity to sound timbre was reduced across three cortical fields compared to control animals, but maintained in a non-primary field (the posterior pseudosylvian field). While training did not increase sensitivity to timbre across auditory cortex, it did change the way in which neurons integrated spectral information with neural responses in trained animals increasing their sensitivity to first and second formant frequencies, whereas in control animals' cortical sensitivity to spectral timbre depends mostly on the second formant. Animals trained on timbre identification were required to generalize across pitch when discriminating timbre and their neurons became less modulated by fundamental frequency relative to control animals. Finally, both trained groups showed increased spatial sensitivity and an enhanced response to sound source locations close to the midline, where the loudspeaker was located in the training chamber. These results demonstrate that training elicited widespread alterations in the cortical representation of complex sounds.Significance Statement Learning a task can elicit widespread changes in the brain. Here, we trained animals to discriminate sound timbre using synthetic vowel sounds. Somewhat surprisingly we observed that in 3 out of 4 of the brain regions studied, neural responses became less sensitive to timbre, while in the 4th area sensitivity was maintained. This suggests that training does not simply rewire more neurons to represent learned stimuli. Neurons also changed the way in which they processed stimuli becoming more sensitive to the formant cues that determine vowel identity and tuned preferentially for the region of space in which sounds were presented during training. Together, these results suggest that learning results in complex changes in how and whether neurons represent learned sounds.
The release of GLP-1 from gut L cells is inhibited by low extracellular pH.
OBJECTIVE: The intestinal luminal pH profile varies from stomach to rectum and becomes disrupted in diseases. However, little is known about the pH dependence of incretin hormone secretion, with most in vitro studies having failed to consider this modulatory factor or having used nonphysiological buffer systems. Here, we report the extracellular pH (pHe) dependence of glucagon-like peptide-1 (GLP-1) exocytosis from L cells. METHODS: The pHe dependence of GLP-1 release from GLUTag cells and murine ex vivo primary gut cultures was detected by ELISA. GLP-1 release was measured over a range of pHe under a physiological (CO2/HCO3 -) buffering regime and in its absence (HEPES buffer). The relationship between intracellular pH (pHi) and pHe was mapped given that at least some component of pH sensitivity is likely to be intracellular. RESULTS: GLP-1 secretion from L cells was pHe-dependent and stimulated under alkaline conditions. In the absence of glucose or extracellular calcium, secretion remained at a pHe-insensitive baseline. pHi followed changes in pHe, but the relationship was offset to more alkaline levels in the absence of CO2/HCO3 - buffer and became shallower if [Cl-] changes that normally accompany [HCO3 -] changes were compensated iso-osmotically with gluconate. CONCLUSIONS: GLP-1 secretion is sensitive to pHe and the buffer present. Exploiting this mechanism therapeutically may benefit patients with obesity.