Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue.

    2 July 2018

    Electrical heterogeneities play a role in the initiation of cardiac arrhythmias. In certain pathological conditions such as ischaemia, current sinks can develop in the diseased cardiac tissue. In this study, we investigate the effects of changing the amount of heterogeneity and intercellular coupling on wavefront stability in a cardiac cell culture system and a mathematical model of excitable media. In both systems, we observe three types of behaviour: plane wave propagation without breakup, plane wave breakup into spiral waves and plane wave block. In the theoretical model, we observe a linear decrease in propagation velocity as the number of heterogeneities is increased, followed by a rapid, nonlinear decrease to zero. The linear decrease results from the heterogeneities acting independently on the wavefront. A general scaling argument that considers the degree of system heterogeneity and the properties of the excitable medium is used to derive a dimensionless parameter that describes the interaction of the wavefront with the heterogeneities.

  • Dynamical mechanism for subcellular alternans in cardiac myocytes.

    2 July 2018

    RATIONALE: Cardiac repolarization alternans is an arrhythmogenic rhythm disturbance, manifested in individual myocytes as a beat-to-beat alternation of action potential durations and intracellular calcium transient magnitudes. Recent experimental studies have reported "subcellular alternans," in which distinct regions of an individual cell are seen to have counterphase calcium alternations, but the mechanism by which this occurs is not well understood. Although previous theoretical work has proposed a possible dynamical mechanism for subcellular alternans formation, no direct evidence for this mechanism has been reported in vitro. Rather, experimental studies have generally invoked fixed subcellular heterogeneities in calcium-cycling characteristics as the mechanism of subcellular alternans formation. OBJECTIVE: In this study, we have generalized the previously proposed dynamical mechanism to predict a simple pacing algorithm by which subcellular alternans can be induced in isolated cardiac myocytes in the presence or absence of fixed subcellular heterogeneity. We aimed to verify this hypothesis using computational modeling and to confirm it experimentally in isolated cardiac myocytes. Furthermore, we hypothesized that this dynamical mechanism may account for previous reports of subcellular alternans seen in statically paced, intact tissue. METHODS AND RESULTS: Using a physiologically realistic computational model of a cardiac myocyte, we show that our predicted pacing algorithm induces subcellular alternans in a manner consistent with theoretical predictions. We then use a combination of real-time electrophysiology and fluorescent calcium imaging to implement this protocol experimentally and show that it robustly induces subcellular alternans in isolated guinea pig ventricular myocytes. Finally, we use computational modeling to demonstrate that subcellular alternans can indeed be dynamically induced during static pacing of 1D fibers of myocytes during tissue-level spatially discordant alternans. CONCLUSION: Here we provide the first direct experimental evidence that subcellular alternans can be dynamically induced in cardiac myocytes. This proposed mechanism may contribute to subcellular alternans formation in the intact heart.

  • Spiral wave generation in heterogeneous excitable media.

    2 July 2018

    As the coupling in a heterogeneous excitable medium is reduced, three different types of behavior are encountered: plane waves propagate without breaking up, plane waves break up into spiral waves, and plane waves block. We illustrate these phenomena in monolayers of chick embryonic heart cells using calcium sensitive fluorescent dyes. Following the addition of heptanol, an agent that reduces the electrical coupling between cells, we observe breakup of spiral waves. These results are modeled in a heterogeneous cellular automaton model in which the neighborhood of interaction is modified.

  • Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences.

    3 July 2018

    We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.

  • Genome sequence, comparative analysis and haplotype structure of the domestic dog.

    3 July 2018

    Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.

  • Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate.

    3 July 2018

    (R)-3-Hydroxybutyl (R)-3-hydroxybutyrate (ketone monoester) has been developed as an oral source of ketones, which may be utilized for energy. In a 28-day toxicity study, Crl:WI (Wistar) rats received diets containing, as 30% of the calories, ketone monoester (12 and 15 g/kg body weight/day for male and female rats, respectively). Control groups received either carbohydrate- or fat-based diets. Rats in the test group consumed less feed and gained less weight than control animals; similar findings have been documented in studies of ketogenic diets. Between-group differences were noted in selected hematology, coagulation, and serum chemistry parameters; however, values were within normal physiological ranges and/or were not accompanied by other changes indicative of toxicity. Upon gross and microscopic evaluation, there were no findings associated with the ketone monoester. In a developmental toxicity study, pregnant Crl:WI (Han) rats were administered 2g/kg body weight/day ketone monoester or water (control) via gavage on days 6 through 20 of gestation. No Caesarean-sectioning or litter parameters were affected by the test article. The overall incidence of fetal alterations was higher in the test group; however, there were no specific alterations attributable to the test substance. The results of these studies support the safety of ketone monoester.

  • Calcium signalling by nicotinic acid adenine dinucleotide phosphate (NAADP).

    3 July 2018

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a recently described Ca2+ mobilizing messenger, and probably the most potent. We briefly review its unique properties as a Ca2+ mobilizing agent. We present arguments for its action in targeting acidic calcium stores rather than the endoplasmic reticulum. Finally, we discuss possible biosynthetic pathways for NAADP in cells and candidates for its target Ca2+ release channel, which has eluded identification so far.

  • Enhanced ER Ca2+ store filling by overexpression of SERCA2b promotes IP3-evoked puffs.

    2 July 2018

    Liberation of Ca(2+) from the endoplasmic reticulum (ER) through inositol trisphosphate receptors (IP(3)R) is modulated by the ER Ca(2+) content, and overexpression of SERCA2b to accelerate Ca(2+) sequestration into the ER has been shown to potentiate the frequency and amplitude of IP(3)-evoked Ca(2+) waves in Xenopus oocytes. Here, we examined the effects of SERCA overexpression on the elementary IP(3)-evoked puffs to elucidate whether ER [Ca(2+)] may modulate IP(3)R function via luminal regulatory sites in addition to simply determining the size of the available store and electrochemical driving force for Ca(2+) release. SERCA2b and Ca(2+) permeable nicotinic plasmalemmal channels were expressed in oocytes, and hyperpolarizing pulses were delivered to induce Ca(2+) influx and thereby load ER stores. Puffs evoked by photoreleased IP(3) were significantly potentiated in terms of numbers of responding sites, frequency and amplitude following transient Ca(2+) influx in SERCA-overexpressing cells, whereas little change was evident with SERCA overexpression alone or following Ca(2+) influx in control cells not overexpressing SERCA. Intriguingly, we observed the appearance of a new population of puffs that arose after long latencies and had prolonged durations supporting the notion of luminal regulation of IP(3)R gating kinetics.