Search results
Found 12942 matches for
Magnesium deficiency prevents high-fat-diet-induced obesity in mice.
AIMS/HYPOTHESIS: Hypomagnesaemia (blood Mg2+ <0.7 mmol/l) is a common phenomenon in individuals with type 2 diabetes. However, it remains unknown how a low blood Mg2+ concentration affects lipid and energy metabolism. Therefore, the importance of Mg2+ in obesity and type 2 diabetes has been largely neglected to date. This study aims to determine the effects of hypomagnesaemia on energy homeostasis and lipid metabolism. METHODS: Mice (n = 12/group) were fed either a low-fat diet (LFD) or a high-fat diet (HFD) (10% or 60% of total energy) in combination with a normal- or low-Mg2+ content (0.21% or 0.03% wt/wt) for 17 weeks. Metabolic cages were used to investigate food intake, energy expenditure and respiration. Blood and tissues were taken to study metabolic parameters and mRNA expression profiles, respectively. RESULTS: We show that low dietary Mg2+ intake ameliorates HFD-induced obesity in mice (47.00 ± 1.53 g vs 38.62 ± 1.51 g in mice given a normal Mg2+-HFD and low Mg2+-HFD, respectively, p
Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1.
ATP-sensitive potassium channels play a major role in linking metabolic signals to the exocytosis of insulin in the pancreatic beta cell. These channels consist of two types of protein subunit: the sulfonylurea receptor SUR1 and the inward rectifying potassium channel Kir6.2. Mutations in the genes encoding these proteins are the most common cause of congenital hyperinsulinism (CHI). Since 1973, we have followed up 38 pediatric CHI patients in Finland. We reported previously that a loss-of-function mutation in SUR1 (V187D) is responsible for CHI of the most severe cases. We have now identified a missense mutation, E1506K, within the second nucleotide binding fold of SUR1, found heterozygous in seven related patients with CHI and in their mothers. All patients have a mild form of CHI that usually can be managed by long-term diazoxide treatment. This clinical finding is in agreement with the results of heterologous coexpression studies of recombinant Kir6.2 and SUR1 carrying the E1506K mutation. Mutant K(ATP) channels were insensitive to metabolic inhibition, but a partial response to diazoxide was retained. Five of the six mothers, two of whom suffered from hypoglycemia in infancy, have developed gestational or permanent diabetes. Linkage and haplotype analysis supported a dominant pattern of inheritance in a large pedigree. In conclusion, we describe the first dominantly inherited SUR1 mutation that causes CHI in early life and predisposes to later insulin deficiency.
The influence of the permeant ions thallous and potassium on inward rectification in frog skeletal muscle.
A three-electrode voltage-clamp method was used to investigate the inactivation of Tl currents through the inward rectifier of frog sartorius muscle fibres, and the interaction between the permeant ions Tl+ and K+. In 80 mM-Tl Ringer inward currents inactivated on hyperpolarization along an exponential time course, with time constants that initially increased and then fell with increasing hyperpolarization. Because of the inactivation process steady-state conductances were smaller than instantaneous conductances at all potentials in Tl Ringer. The steady-state conductance increased to a maximum value at around - 100 mV in 80 mM-Tl Ringer, and then fell with increasing hyperpolarization. In K Ringer the steady-state conductance was greater at all potentials than the instantaneous conductance because K currents activate (rather than inactivate) on hyperpolarization. Time constants of Tl inactivation were the same when measured from the decay of current during a single pulse, or from the rate of recovery from inactivation using either a two- or a three-pulse method, indicating that inactivation obeys first-order kinetics. In 80 mM-Tl Ringer steady-state inactivation increased with increasing hyperpolarization, e-fold every 48 mV. This would be consistent with the site at which inactivation occurs experiencing 0.5 of the membrane voltage field. Tl+ was more permeant than K+ through the inward rectifier, the permeability ratio PTl+/PK+ being 1.66. In solutions containing both Tl+ and K+ the membrane showed an anomalous mole-fraction dependence of conductance, the resting potential being more negative, and both instantaneous and steady-state conductances smaller than those recorded in solutions containing only Tl+ or only K+. The reduction in the amplitude of the instantaneous conductance in Tl-K mixtures was voltage-dependent, the block being initially increased and then falling with increasing hyperpolarization. Inward currents also inactivated on hyperpolarization in Tl-K mixtures. The time constants of inactivation, and the extent of inactivation which occurred, became less dependent on membrane potential in these solutions. When K+ is the major permeant ion in solution, Tl+ has a blocking effect on the currents carried by K+, and the degree of block is voltage-dependent. Increasing [Tl]o increased the block at all potentials. The results of our experiments in solutions containing both Tl+ and K+ are discussed in terms of an interaction between these ions within the channel.
Calcium inactivation in skeletal muscle fibres of the stick insect, Carausius morosus.
1. Inactivation of Ca currents in skeletal muscle fibres of the stick insect, Carausius morosus, was studied using a three-electrode voltage-clamp method. 2. The extent of inactivation showed a voltage-dependence similar to that of the Ca current, inactivation being absent in the absence of a Ca current, maximal at potentials where Ca currents are largest, and reduced at potentials close to ECa. 3. Ca currents inactivated along a double exponential time course, both when measured from the decline of Ca current during a single pulse and when measured using a two pulse protocol. In 20 mM-Ca-Ringer the fast time constant of inactivation had a mean value of 27 msec and that of the slow time constant was 134 msec, at O mV and 5 degrees C. 4. The rate of inactivation was slowed, and its extent reduced, in low [Ca]o, where Ca currents are smaller. Similarly, inactivation was faster and more complete in high-Ca-Ringer. 5. The rate of recovery from inactivation also followed a double exponential time course, with time constants of 638 msec and 4 sec following a 500 msec inactivating pulse in 20 mM-Ca-Ringer at 5 degrees C. Recovery appeared to be related to the amount of Ca entry during the inactivating pulse, being slower in high [Ca]o and following longer inactivating pulses. 6. Inactivation was slowed and reduced in extent when Ba2+ or Sr2+ carried current. Inactivation in Ba solutions may be due to depletion of Ba2+ from the lumen of the transverse tubules. 7. Ba2+ does not compete with Ca2+ for the inactivation mechanism. 8. It is concluded that inactivation of Ca currents in stick insect muscle fibres is primarily mediated by Ca2+ entry.
ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis.
Glucose-responsive (GR) neurons in the hypothalamus are thought to be critical in glucose homeostasis, but it is not known how they function in this context. Kir6.2 is the pore-forming subunit of K(ATP) channels in many cell types, including pancreatic beta-cells and heart. Here we show the complete absence of both functional ATP-sensitive K+ (K(ATP)) channels and glucose responsiveness in the neurons of the ventromedial hypothalamus (VMH) in Kir6.2-/- mice. Although pancreatic alpha-cells were functional in Kir6.2-/-, the mice exhibited a severe defect in glucagon secretion in response to systemic hypoglycemia. In addition, they showed a complete loss of glucagon secretion, together with reduced food intake in response to neuroglycopenia. Thus, our results demonstrate that KATP channels are important in glucose sensing in VMH GR neurons, and are essential for the maintenance of glucose homeostasis.
Calcium currents of frog and insect skeletal muscle fibres measured during voltage clamp.
Both vertebrate and invertebrate skeletal muscle fibres have Ca2+ permeability mechanisms which are turned on by depolarization of the surface membrane. In frog muscle, Ca currents are extremely slow and will be scarcely activated during the action potential that normally elicits a twitch. This Ca permeability cannot therefore play any substantial, direct role in excitation--contraction coupling. In insect (Carausius morosus) muscle, Ca currents activate within milliseconds of depolarization, even at low temperature, and may well play at least a triggering role in excitation--contraction coupling. These Ca currents show saturation with increasing [Ca]0, while the instantaneous current--voltage relation rectifies inwards, as expected from a very low [Ca]i. The Ca channel is permeable to Sr2+ and Ba2+. Inactivation of Ca currents under a maintained depolarization depends on Ca2+ carrying inward current, however, rather than on the depolarization itself.
Calcium and potassium currents in muscle fibres of an insect (Carausius morosus).
1. A three electrode voltage-clamp was used to investigate membrane currents in the skeletal muscle fibres of the stick insect, Carausius morosus. Contraction was blocked by hypertonic solutions. 2. Membrane currents elicited by step depolarizations consisted of an inward current, an early outward current and a delayed outward current. 3. The reversal potential of the delayed outward current did not change when SO4(2-) was substituted for Cl-, but shifted by 14.1 mV when [K]0 was increased from 20 mM to 40 mM in SO4(2-) solution, suggesting that the delayed current is carried by K+. Both early and delayed outward currents were substantially reduced by 120 mM-tetraethylammonium (TEA) ions. 4. The small size of the shift in the reversal potential of the delayed outward current with increased pulse duration suggests that the delayed current measured flows mainly across the surface membrane. 5. Increasing [Ca]o made the apparent reversal potential for the inward current (120 mM-TEA Ringer) more positive and increased the size of the maximum inward current. However, Ca-currents showed saturation with increasing [Ca]o, indicating that there is a site to which Ca ions bind during their passage through the membrane. The dissociation constant of this site was 7.3 mM at 0 mV and was voltage-dependent. 6. Inward currents were blocked by 1 mM-La3+ or Cd2+, or by substitution of Co2+ or Ni2+ for Mg2+. Strontium and barium were able to permeate the channel but Na+ and Mg2+ appear impermeant. 7. As expected from the low intracellular Ca concentration, the instantaneous current-voltage relation of the Ca current rectified strongly in the inward direction. 8. Both constant field theory and the simplest, single site, Eyring rate theory model predict the rectification of the instantaneous current-voltage relation. The rate theory model also predicts saturation of the Ca current with [Ca]o.
Role of the C-terminus of SUR in the differential regulation of β-cell and cardiac KATP channels by MgADP and metabolism.
KEY POINTS: β-Cell KATP channels are partially open in the absence of metabolic substrates, whereas cardiac KATP channels are closed. Using cloned channels heterologously expressed in Xenopus oocytes we measured the effect of MgADP on the MgATP concentration-inhibition curve immediately after patch excision. MgADP caused a far more striking reduction in ATP inhibition of Kir6.2/SUR1 channels than Kir6.2/SUR2A channels; this effect declined rapidly after patch excision. Exchanging the final 42 amino acids of SUR was sufficient to switch the Mg-nucleotide regulation of Kir6.2/SUR1 and Kir6.2/SUR2A channels, and partially switch their sensitivity to metabolic inhibition. Deletion of the C-terminal 42 residues of SUR abolished MgADP activation of both Kir6.2/SUR1 and Kir6.2/SUR2A channels. We conclude that the different metabolic sensitivity of Kir6.2/SUR1 and Kir6.2/SUR2A channels is at least partially due to their different regulation by Mg-nucleotides, which is determined by the final 42 amino acids. ABSTRACT: ATP-sensitive potassium (KATP ) channels couple the metabolic state of a cell to its electrical activity and play important physiological roles in many tissues. In contrast to β-cell (Kir6.2/SUR1) channels, which open when extracellular glucose levels fall, cardiac (Kir6.2/SUR2A) channels remain closed. This is due to differences in the SUR subunit rather than cell metabolism. As ATP inhibition and MgADP activation are similar for both types of channels, we investigated channel inhibition by MgATP in the presence of 100 μm MgADP immediately after patch excision [when the channel open probability (PO ) is near maximal]. The results were strikingly different: 100 μm MgADP substantially reduced MgATP inhibition of Kir6.2/SUR1, but had no effect on MgATP inhibition of Kir6.2/SUR2A. Exchanging the final 42 residues of SUR2A with that of SUR1 switched the channel phenotype (and vice versa), and deleting this region abolished Mg-nucleotide activation. This suggests the C-terminal 42 residues are important for the ability of MgADP to influence ATP inhibition at Kir6.2. This region was also necessary, but not sufficient, for activation of the KATP channel in intact cells by metabolic inhibition (azide). We conclude that the ability of MgADP to impair ATP inhibition at Kir6.2 accounts, in part, for the differential metabolic sensitivities of β-cell and cardiac KATP channels.
Democratising "Microscopi": a 3D printed automated XYZT fluorescence imaging system for teaching, outreach and fieldwork.
Commercial fluorescence microscope stands and fully automated XYZt fluorescence imaging systems are generally beyond the limited budgets available for teaching and outreach. We have addressed this problem by developing "Microscopi", an accessible, affordable, DIY automated imaging system that is built from 3D printed and commodity off-the-shelf hardware, including electro-mechanical, computer and optical components. Our design features automated sample navigation and image capture with a simple web-based graphical user interface, accessible with a tablet or other mobile device. The light path can easily be switched between different imaging modalities. The open source Python-based control software allows the hardware to be driven as an integrated imaging system. Furthermore, the microscope is fully customisable, which also enhances its value as a learning tool. Here, we describe the basic design and demonstrate imaging performance for a range of easily sourced specimens.
Advances in Applying Computer-Aided Drug Design for Neurodegenerative Diseases.
Neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are incurable and affect millions of people worldwide. The development of treatments for this unmet clinical need is a major global research challenge. Computer-aided drug design (CADD) methods minimize the huge number of ligands that could be screened in biological assays, reducing the cost, time, and effort required to develop new drugs. In this review, we provide an introduction to CADD and examine the progress in applying CADD and other molecular docking studies to NDs. We provide an updated overview of potential therapeutic targets for various NDs and discuss some of the advantages and disadvantages of these tools.
Waking experience modulates sleep need in mice.
BACKGROUND: Homeostatic regulation of sleep is reflected in the maintenance of a daily balance between sleep and wakefulness. Although numerous internal and external factors can influence sleep, it is unclear whether and to what extent the process that keeps track of time spent awake is determined by the content of the waking experience. We hypothesised that alterations in environmental conditions may elicit different types of wakefulness, which will in turn influence both the capacity to sustain continuous wakefulness as well as the rates of accumulating sleep pressure. To address this, we compared the effects of repetitive behaviours such as voluntary wheel running or performing a simple touchscreen task, with wakefulness dominated by novel object exploration, on sleep timing and EEG slow-wave activity (SWA) during subsequent NREM sleep. RESULTS: We find that voluntary wheel running is associated with higher wake EEG theta-frequency activity and results in longer wake episodes, as compared with exploratory behaviour; yet, it does not lead to higher levels of EEG SWA during subsequent NREM sleep in either the frontal or occipital derivation. Furthermore, engagement in a touchscreen task, motivated by food reward, results in lower SWA during subsequent NREM sleep in both derivations, as compared to exploratory wakefulness, even though the total duration of wakefulness is similar. CONCLUSION: Overall, our study suggests that sleep-wake behaviour is highly flexible within an individual and that the homeostatic processes that keep track of time spent awake are sensitive to the nature of the waking experience. We therefore conclude that sleep dynamics are determined, to a large degree, by the interaction between the organism and the environment.
Discovery and mechanism of action studies of 4,6-diphenylpyrimidine-2-carbohydrazides as utrophin modulators for the treatment of Duchenne muscular dystrophy.
Duchenne muscular dystrophy is a fatal disease with no cure, caused by lack of the cytoskeletal protein dystrophin. Upregulation of utrophin, a dystrophin paralogue, offers a potential therapy independent of mutation type. The failure of first-in-class utrophin modulator ezutromid/SMT C1100 in Phase II clinical trials necessitates development of compounds with better efficacy, physicochemical and ADME properties and/or complementary mechanisms. We have discovered and performed a preliminary optimisation of a novel class of utrophin modulators using an improved phenotypic screen, where reporter expression is derived from the full genomic context of the utrophin promoter. We further demonstrate through target deconvolution studies, including expression analysis and chemical proteomics, that this compound series operates via a novel mechanism of action, distinct from that of ezutromid.
Neural circuitry coordinating male copulation.
Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation. This sexually dimorphic circuit composed of three neuronal classes - motor neurons, interneurons and mechanosensory neurons - controls the mechanics of copulation. By correlating the connectivity, function and activity of these neurons we have determined the logic for how this circuitry is coordinated to generate this male-specific behavior, and sets the stage for a circuit-level dissection of active sensing and modulation of copulatory behavior.
Distinct Roles and Synergistic Function of FruM Isoforms in Drosophila Olfactory Receptor Neurons.
Sexual dimorphism in Drosophila courtship circuits requires the male-specific transcription factor fruM, which is alternatively spliced to encode the FruMA, FruMB, and FruMC isoforms. Most fruM-positive neurons express multiple variants; however, the functional significance of their co-expression remains undetermined. Do co-expressed isoforms each play unique roles to jointly regulate dimorphism? By focusing on fruM-positive olfactory receptor neurons (ORNs), here, we show that FruMB and FruMC are both required for males' age-dependent sensitization to aphrodisiac olfactory cues in a cell-autonomous manner. Interestingly, FruMB expression is upregulated with age in Or47b and Ir84a ORNs, and its overexpression mimics the effect of age in elevating olfactory responses. Mechanistically, FruMB and FruMC synergistically mediate response sensitization through cooperation of their respective downstream effectors, namely, PPK25 and PPK23, which are both required for forming a functional amplification channel in ORNs. Together, these results provide critical mechanistic insight into how co-expressed FruM isoforms jointly coordinate dimorphic neurophysiology.
Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster.
Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for0 null allele, and used recombineering to reintegrate a full copy of the gene, generating the {forBAC} rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis.

