Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Measurement of intracellular pH in isolated bovine articular chondrocytes.

    17 October 2018

    Cartilage is an avascular tissue, the cells of which are exposed to reduced extracellular pH. The synthesis of cartilage matrix by chondrocytes is pH-sensitive and therefore control of intracellular pH (pHi) is important. We have measured the pHi of chondrocytes in MOPS-buffered saline (pH 7.4) using the fluorescent dye 2',7'-bis-2-(carboxyethyl)-5(6)-carboxyfluorescein. Mean pHi was 7.10 +/- 0.04 (+/- S.E.M., n = 22), and intracellular buffering power was 30 +/- 4 mmol l-1 (pH unit)-1 when pHi was displaced over the range 7.4-7.8 (n = 13). Recovery from acid load was blocked by 100 microM-ethylisopropylamiloride or by removal of extracellular Na+, indicating that these cells possess the Na(+)-H+ antiporter.

  • Mechanisms contributing to intracellular pH homeostasis in an immortalised human chondrocyte cell line.

    17 October 2018

    The maintenance of chondrocyte pH is an important parameter controlling cartilage matrix turnover rates. Previous studies have shown that, to varying degrees, chondrocytes rely on Na(+)/H(+) exchange to regulate pH. HCO(3)(-)-dependent buffering and HCO(3)(-)-dependent acid-extrusion systems seem to play relatively minor roles. This situation may reflect minimal carbonic anhydrase activity in cartilage cells. In the present study, the pH regulation of the human chondrocyte cell line, C-20/A4 has been characterised. Intracellular pH (pH(i)) was measured using the H(+)-sensitive fluoroprobe BCECF. In solutions lacking HCO(3)(-)/CO(2), pH(i) was approximately 7.5, and the recovery from intracellular acidification was predominantly mediated by a Na(+)-dependent, amiloride- and HOE 694-sensitive process. A small additional component which was sensitive to chloro-7-nitrobenz-2-oxa-1,3-diazole, an inhibitor of the V-type H(+)-ATPase, was also apparent. In solutions containing HCO(3)(-)/CO(2), pH(i) was approximately 7.2. Comparison of buffering capacity in the two conditions showed that this variable was not significantly augmented in HCO(3)(-)/CO(2)-containing media. The recovery from intracellular acidification was more rapid in the presence of HCO(3)(-)/CO(2), although under these conditions it was again largely dependent on Na(+) ions and inhibited by amiloride and HOE 694. A small component was inhibited by SITS, although this effect did not reach the level of statistical significance. These findings indicate that HCO(3)(-)-dependent processes play only a minimal role in pH regulation in C-20/A4 chondrocytes. pH regulation instead relies heavily on the Na(+)/H(+) exchanger together with a H(+)-ATPase. The absence of extrinsic (HCO(3)(-)/CO(2)) buffering is likely to reflect the low levels of carbonic anhydrase in these cells. In addition to providing fundamental information about a widely-used cell line, these findings support the contention that the unusual nature of pH regulation in chondrocytes reflects the paucity of carbonic anhydrase activity in these cells.

  • Changes in intracellular calcium concentration in response to hypertonicity in bovine articular chondrocytes.

    17 October 2018

    Intracellular calcium concentration ([Ca2+]i) in articular chondrocytes changes during mechanical challenges associated with joint movements, because of the fluctuation of the extracellular osmotic environment during joint loading. Matrix synthesis by chondrocytes is modulated by loading patterns, possibly mediated by variations in intracellular composition, including [Ca2+]i. The present study has employed the Ca(2+)-sensitive fluoroprobe Fura-2 to determine the effects of hypertonic shock on intracellular Ca2+ concentration ([Ca2+]i) and to characterise the mechanisms involved in the response for isolated bovine articular chondrocytes. In cells subjected to a hypertonic shock, [Ca2+]i rapidly increased by approximately 300%, reaching a maximal value within 50 s following the hypertonic shock with a recovery of more than 90% towards the initial [Ca2+]i within 5 min. The effect was inhibited by removal of extracellular Ca2+ ions, but not by thapsigargin, indicating that the rise in [Ca2+]i is only a result of influx from the extracellular medium. The rise was insensitive to inhibitors of L-type voltage-activated Ca2+ channels, TRPV channels or stretch-activated cation channels. Non-specific inhibitors of Ca2+ channels like CdCl2, NiCl2, LaCl3 and ZnCl2 significantly attenuated the response, although the extent in which CdCl2 and NiCl2 (both of them inhibitors of annexin-mediated Ca2+ fluxes) inhibited the response was significantly greater. The rise was also sensitive to KBR7943, inhibitor of NCE reverse mode and trifluoperazine, inhibitor of the activity of annexins. Hypertonic shock also produced also hyperpolarisation of chondrocytes (Em measured by means of Di-BA-C4(3), a membrane potential sensitive dye), which was inhibited by TEA-Cl and BaCl, but was not affected by changing the extracellular solution to Ca(2+)-free HBS. Inhibition of hyperpolarisation completely abolished the [Ca2+]i rise following hypertonic shock. Treatment with retinoic acid, which can increase the activity of annexins as Ca2+ transport pathways caused a significant increase in [Ca2+]i. The recovery of [Ca2+] was inhibited by benzamil and was dependent on extracellular Na+, but was unaffected by Na-orthovanadate, an inhibitor of plasma Ca(2+)-ATPase. We conclude that in response to hypertonic shock, NCE reverse mode and annexins are the pathways responsible for the [Ca2+]i increase, while forward mode operation of NCE is responsible for the subsequent extrusion of Ca2+ and recovery of [Ca2+]i towards initial values.

  • KCl cotransporter-3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition.

    17 October 2018

    The potassium chloride cotransporter (KCC) is a major determinant of osmotic homeostasis and plays an emerging role in tumor biology. Here, we investigate if KCC is involved in the regulation of epithelial-mesenchymal transition (EMT), a critical cellular event of malignancy. E-cadherin and beta-catenin colocalize in the cell-cell junctions, which becomes more obvious in a time-dependent manner by blockade of KCC activity in cervical cancer SiHa and CaSki cells. Real-time reverse transcription-PCR on the samples collected from the laser microdissection indicates that KCC3 is the most abundant KCC isoform in cervical carcinoma. The characteristics of EMT appear in KCC3-overexpressed, but not in KCC1- or KCC4-overexpressed cervical cancer cells, including the elongated cell shape, increased scattering, down-regulated epithelial markers (E-cadherin and beta-catenin), and up-regulated mesenchymal marker (vimentin). Some cellular functions are enhanced by KCC3 overexpression, such as increased invasiveness and proliferation, and weakened cell-cell association. KCC3 overexpression decreases mRNA level of E-cadherin. The promoter activity assays of various regulatory sequences confirm that KCC3 expression is a potent negative regulator for human E-cadherin gene expression. The proteosome inhibitor restores the decreased protein abundance of beta-catenin by KCC3 overexpression. In the surgical specimens of cervical carcinoma, the decreased E-cadherin amount was accompanied by the increased KCC3 abundance. Vimentin begins to appear at the invasive front and becomes significantly expressed in the tumor nest. In conclusion, KCC3 down-regulates E-cadherin/beta-catenin complex formation by inhibiting transcription of E-cadherin gene and accelerating proteosome-dependent degradation of beta-catenin protein. The disruption of E-cadherin/beta-catenin complex formation promotes EMT, thereby stimulating tumor progression.

  • Anion exchanger isoform 2 operates in parallel with Na(+)/H(+) exchanger isoform 1 during regulatory volume decrease of human cervical cancer cells.

    17 October 2018

    Intracellular pH (pH(i)) homeostasis was investigated in human cervical cancer SiHa cells undergoing regulatory volume decrease (RVD) to determine which transport systems were involved. Using isoform-specific primers, mRNA transcripts of Na(+)/H(+) exchanger isoform 1 (NHE1) and isoform 3 were identified by reverse transcriptase polymerase chain reaction (RT-PCR) and the results confirmed by Western immunoblotting. From anion exchanger isoforms 1-3 (AE1-3), only the mRNA transcript of AE2 was identified by RT-PCR and the identity was confirmed by digestion with a specific restriction endonuclease. SiHa cells loaded with the fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and resuspended in isotonic media showed a stable pH(i). In contrast, a gradual internal acidification took place following resuspension in hypotonic media. The NHE inhibitors, HOE694 (10 microM) and amiloride (1 mM), showed a similar potency in enhancing the rate and extent of the hypotonicity-induced internal acidification. The absence of extracellular Na(+) also substantially enhanced the acidification during RVD. These results suggest that internal acidification during RVD is mainly compensated by the operation of NHE1. Extracellular Cl(-) was critically necessary for the pH(i) acidification during RVD. The hypotonicity-induced acidification was significantly attenuated by 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, a concentration inhibiting more than 90% AE activity. This indicates that AE2 mediates a net Cl(-) influx with compensating HCO(3)(-) efflux during RVD. We conclude that AE2 operates in parallel with NHE1 to regulate pH(i) during RVD of human cervical cancer cells.