Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • MKP-1 knockout does not prevent glucocorticoid-induced bone disease in mice.

    12 December 2017

    Glucocorticoid-induced osteoporosis (GCOP) is predominantly caused by inhibition of bone formation, resulting from a decrease in osteoblast numbers. Employing mouse (MBA-15.4) and human (MG-63) osteoblast cell lines, we previously found that the glucocorticoid (GC) dexamethasone (Dex) inhibits cellular proliferation as well as activation of the MAPK/ERK signaling pathway, essential for mitogenesis in these cells, and that both these effects could be reversed by the protein tyrosine phosphatase (PTP) inhibitor vanadate. In a rat model of GCOP, the GC-induced changes in bone formation, mass, and strength could be prevented by vanadate cotreatment, suggesting that the GC effects on bone were mediated by one or more PTPs. Employing phosphatase inhibitors, qRT-PCR, Western blotting, and overexpression/knockdown experiments, we concluded that MKP-1 was upregulated by Dex, that this correlated with the dephosphorylation of ERK, and that it largely mediated the in vitro effects of GCs on bone. To confirm the pivotal role of MKP-1 in vivo, we investigated the effects of the GC methylprednisolone on the quantitative bone histology of wild-type (WT) and MKP-1 homozygous knockout (MKP-1(-/-)) mice. In WT mice, static bone histology revealed that GC administration for 28 days decreased osteoid surfaces, volumes, and osteoblast numbers. Dynamic histology, following time-spaced tetracycline labeling, confirmed a significant GC-induced reduction in osteoblast appositional rate and bone formation rate. However, identical results were obtained in MKP-1 knockout mice, suggesting that in these animals upregulation of MKP-1 by GCs cannot be regarded as the sole mediator of the GC effects on bone.

  • Modulation of the BK channel by estrogens: examination at single channel level.

    8 December 2017

    BK channels regulate vascular tone by hyperpolarizing smooth muscle in response to fluctuating calcium concentrations. Oestrogen has been reported to lower blood pressure by increasing BK channel open probability through direct binding to the regulatory beta1-subunit(s) associated with the channel. The present investigation demonstrates that 17beta-oestradiol activates the BK channel complex by increasing the burst duration of channel openings. A subconductance state was observed in 25% of recordings following the addition of 17beta-oestradiol and could reflect uncoupling between the pore forming alpha1-subunit and the regulatory beta1-subunit. We also present evidence that more than one beta1-subunit is required to facilitate binding of 17beta-oestradiol to the channel complex.

  • Glucocorticoids induce rapid up-regulation of mitogen-activated protein kinase phosphatase-1 and dephosphorylation of extracellular signal-regulated kinase and impair proliferation in human and mouse osteoblast cell lines.

    8 December 2017

    A central feature of glucocorticoid (GC)-induced osteoporosis is decreased bone formation, secondary to decreased numbers of functional osteoblasts. We find that ERK activity is essential for serum-induced osteoblast proliferation in vitro because inhibition of MAPK/ERK kinase activity by U0126 completely abolished both serum-induced activation of ERK and proliferation of mouse (MBA-15.4) and human (MG-63) osteoblast cell lines. Dexamethasone (Dex) rapidly (<2 h) inhibits the sustained phase of ERK activation, required for nuclear shift and mitogenesis. This inhibition is reversed by cotreatment with the protein synthesis inhibitor, cycloheximide, and by the GC receptor antagonist, RU486, suggesting a classical transcriptional mechanism. Phosphatase activity was up-regulated by Dex treatment, and inhibition of ERK activity by Dex was also reversed by the protein tyrosine phosphatase inhibitor, vanadate. Coupled with the rapidity of Dex action, this indicates immediate-early gene phosphatase involvement, and we therefore used quantitative, real-time PCR to examine expression profiles of the dual-specificity MAPK phosphatases, MKP-1 and MKP-3. MKP-1, but not MKP-3, mRNA expression was 10-fold up-regulated in both mouse and human osteoblast cell lines within 30 min of Dex treatment and remained elevated for 24 h. MKP-1 protein was also markedly up-regulated following 1-8 h of Dex treatment, and this correlated precisely with dephosphorylation of ERK. Cell proliferation was impaired by Dex treatment, and this was reversed by both RU486 and vanadate. Therefore, MKP-1 up-regulation provides a novel and rapid mechanism, whereby GCs inhibit osteoblast proliferation.

  • Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters.

    13 December 2017

    Cancer cell resistance to chemotherapy is often mediated by overexpression of P-glycoprotein, a plasma membrane ABC (ATP-binding cassette) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. P-glycoprotein (ABCB1, according to the human gene nomenclature committee) consists of two homologous halves each containing a transmembrane domain (TMD) involved in drug binding and efflux, and a cytosolic nucleotide-binding domain (NBD) involved in ATP binding and hydrolysis, with an overall (TMD-NBD)2 domain topology. Homologous ABC multidrug transporters, from the same ABCB family, are found in many species such as Plasmodiumfalciparum and Leishmania spp. protozoa, where they induce resistance to antiparasitic drugs. In yeasts, some ABC transporters involved in resistance to fungicides, such as Saccharomyces cerevisiae Pdr5p and Snq2p, display a different (NBD-TMD)2 domain topology and are classified in another family, ABCG. Much effort has been spent to modulate multidrug resistance in the different species by using specific inhibitors, but generally with little success due to additional cellular targets and/or extrusion of the potential inhibitors. This review shows that due to similarities in function and maybe in three-dimensional organization of the different transporters, common potential modulators have been found. An in vitro 'rational screening' was performed among the large flavonoid family using a four-step procedure: (i) direct binding to purified recombinant cytosolic NBD and/or full-length transporter, (ii) inhibition of ATP hydrolysis and energy-dependent drug interaction with transporter-enriched membranes, (iii) inhibition of cell transporter activity monitored by flow cytometry and (iv) chemosensitization of cell growth. The results indicate that prenylated flavonoids bind with high affinity, and strongly inhibit drug interaction and nucleotide hydrolysis. As such, they constitute promising potential modulators of multidrug resistance.

  • Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain of mouse P-glycoprotein: structure-activity relationships for flavonoid binding.

    8 December 2017

    Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain (NBD2) of mouse P-glycoprotein were investigated by using two recombinantly expressed soluble proteins of different lengths and photoactive ATP analogues, 8-azidoadenosine triphosphate (8N(3)-ATP) and 2',3',4'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine triphosphate (TNP-8N(3)-ATP). The two proteins, Thr(1044)-Thr(1224) (NBD2(short)) and Lys(1025)-Ser(1276) (NBD2(long)), both incorporated the four consensus sequences of ABC (ATP-binding cassette) transporters, Walker A and B motifs, the Q-loop, and the ABC signature, while differing in N-terminal and C-terminal extensions. Radioactive photolabeling of both proteins was characterized by hyperbolic dependence on nucleotide concentration and high-affinity binding with K(0.5)(8N(3)-ATP) = 36-37 microM and K(0.5)(TNP-8N(3)-ATP) = 0.8-2.6 microM and was maximal at acidic pH. Photolabeling was strongly inhibited by TNP-ATP (K(D) = 0.1-5 microM) and ATP (K(D) = 0.5-2.7 mM). Since flavonoids display bifunctional interactions at the ATP-binding site and a vicinal steroid-interacting hydrophobic sequence [Conseil, G., Baubichon-Cortay, H., Dayan, G., Jault, J.-M., Barron, D., and Di Pietro, A. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9831-9836], a series of 30 flavonoids from different classes were investigated for structure-activity relationships toward binding to the ATP site, monitored by protection against photolabeling. The 3-OH and aromaticity of conjugated rings A and C appeared important, whereas opening of ring C abolished the binding in all but one case. It can be concluded that the benzopyrone portion of the flavonoids binds at the adenyl site and the phenyl ring B at the ribosyl site. The Walker A and B motifs, intervening sequences, and small segments on both sides are sufficient to constitute the ATP site.

  • A novel mutation causing DEND syndrome: a treatable channelopathy of pancreas and brain.

    12 December 2017

    OBJECTIVES: Activating mutations in the human KCNJ11 gene, encoding the pore-forming subunit (Kir6.2) of the ATP-sensitive potassium (K(ATP)) channel, are one cause of neonatal diabetes mellitus. In a few patients, KCNJ11 mutations cause a triad of developmental delay, epilepsy, and neonatal diabetes (DEND syndrome). The aim of this study was to determine the clinical effects, functional cause, and sensitivity to sulfonylurea treatment of a novel KCNJ11 mutation producing DEND syndrome. METHODS: We screened the DNA of a 3-year-old patient with neonatal diabetes, severe developmental delay, and therapy-resistant epilepsy for mutations in KCNJ11. We carried out electrophysiologic analysis of wild-type and mutant K(ATP) channels heterologously expressed in Xenopus oocytes. RESULTS: We identified a novel Kir6.2 mutation (I167L) causing DEND syndrome. Functional analysis showed both homomeric and heterozygous mutant channels were less inhibited by MgATP leading to an increase in whole-cell K(ATP) currents. This effect was due to an increase in the intrinsic open probability. Heterozygous channels were strongly inhibited by the sulfonylurea tolbutamide. Treatment of the patient with the sulfonylurea glibenclamide not only enabled insulin therapy to be stopped, but also resulted in improvement in epilepsy and psychomotor abilities. CONCLUSIONS: We report a case of developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome that shows neurologic improvement with sulfonylurea therapy. Early recognition of patients with DEND syndrome may have considerable therapeutic benefit for the patient.

  • Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution.

    12 December 2017

    The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and a global parameter search is performed to determine the weighting of individual features. Our algorithm has been optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell cycle markers, our framework can be easily adapted to different cell types and fluorescent markers.