Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore.

    27 February 2019

    AIMS: In the heart, a period of ischaemia followed by reperfusion evokes powerful cytosolic Ca(2+) oscillations that can cause lethal cell injury. These signals represent attractive cardioprotective targets, but the underlying mechanisms of genesis are ill-defined. Here, we investigated the role of the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), which is known in several cell types to induce Ca(2+) oscillations that initiate from acidic stores such as lysosomes, likely via two-pore channels (TPCs, TPC1 and 2). METHODS AND RESULTS: An NAADP antagonist called Ned-K was developed by rational design based on a previously existing scaffold. Ned-K suppressed Ca(2+) oscillations and dramatically protected cardiomyocytes from cell death in vitro after ischaemia and reoxygenation, preventing opening of the mitochondrial permeability transition pore. Ned-K profoundly decreased infarct size in mice in vivo. Transgenic mice lacking the endo-lysosomal TPC1 were also protected from injury. CONCLUSION: NAADP signalling plays a major role in reperfusion-induced cell death and represents a potent pathway for protection against reperfusion injury.

  • Is phase-mask alignment aberrating your STED microscope?

    17 October 2018

    The performance of a stimulated emission depletion (STED) microscope depends critically upon the pupil plane phase mask that is used to shape the depletion focus. Misalignments of the mask create unwanted distortions of the depletion focus to the detriment of image quality. It is shown how the phase errors introduced by a misplaced mask are similar to coma aberrations. The effects are investigated analytically, through numerical modelling and experimental measurement. Strategies for the systematic alignment of the masks are discussed.

  • Aberrations and adaptive optics in super-resolution microscopy.

    17 October 2018

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem.

  • Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy

    17 October 2018

    © 2015 Optical Society of America. Single-molecule switching (SMS) microscopy is a super-resolution method capable of producing images with resolutions far exceeding that of the classical diffraction limit. However, like all optical microscopes, SMS microscopes are sensitive to, and often limited by, specimen-induced aberrations. Adaptive optics (AO) has proven beneficial in a range of microscopes to overcome the limitations caused by aberrations. We report here on new AO methods for SMS microscopy that enable the feedback correction of specimen-induced aberrations. The benefits are demonstrated through two-dimensional and three-dimensional STORM imaging. We expect that this advance will broaden the scope of SMS microscopy by enabling deep-cell and tissue-level imaging.

  • Adaptive optics for single molecule switching nanoscopy

    17 October 2018

    Specimen-induced aberrations frequently affect image quality in high-resolution microscopes. Aberration effects can be even more problematic in super-resolution methods. We show adaptive aberration correction in STORM microscopy of deep cell and tissue specimens. © OSA 2015.

  • A novel approach combining real-time imaging and the patch-clamp technique to calibrate FRET-based reporters for cAMP in their cellular microenvironment.

    17 October 2018

    Fluorescence resonance energy transfer (FRET)-based reporters are invaluable tools to study spatiotemporal aspects of cyclic adenosine monophosphate (cAMP) signaling and compartmentalization in living cells. These sensors allow estimation of relative changes of cAMP levels in real-time and intact cells. However, one of their major shortcomings is that they do not easily allow direct measurement of cAMP concentrations. This is mainly due to the fact that the methods to calibrate these sensors in their physiological microenvironment are not generally available. All published approaches to calibrate FRET-based reporters rely at least in part on data derived under nonphysiological conditions. Here, we present a protocol to calibrate FRET reporters completely "in cell." We introduce a combination of FRET imaging of cAMP and the whole-cell patch-clamp techniques to microinfuse or dilute intracellular cAMP to known concentrations. This method represents a general tool to accurately estimate intracellular cAMP concentrations by allocating concentration values to FRET ratio changes.

  • Phosphorylation of ezrin on Thr567 is required for the synergistic activation of cell spreading by EPAC1 and protein kinase A in HEK293T cells.

    17 October 2018

    Recent studies have demonstrated that the actin binding protein, ezrin, and the cAMP-sensor, EPAC1, cooperate to induce cell spreading in response to elevations in intracellular cAMP. To investigate the mechanisms underlying these effects we generated a model of EPAC1-dependent cell spreading based on the stable transfection of EPAC1 into HEK293T (HEK293T-EPAC1) cells. We found that direct activation of EPAC1 with the EPAC-selective analogue, 8-pCPT-2'-O-Me-cAMP (007), promoted cell spreading in these cells. In addition, co-activation of EPAC1 and PKA, with a combination of the adenylate cyclase activator, forskolin, and the cAMP phosphodiesterase inhibitor, rolipram, was found to synergistically enhance cell spreading, in association with cortical actin bundling and mobilisation of ezrin to the plasma membrane. PKA activation was also associated with phosphorylation of ezrin on Thr567, as detected by an electrophoretic band mobility shift during SDS-PAGE. Inhibition of PKA activity blocked ezrin phosphorylation and reduced the cell spreading response to cAMP elevation to levels induced by EPAC1-activation alone. Transfection of HEK293T-EPAC1 cells with inhibitory ezrin mutants lacking the key PKA phosphorylation site, ezrin-Thr567Ala, or the ability to associate with actin, ezrin-Arg579Ala, promoted cell arborisation and blocked the ability of EPAC1 and PKA to further promote cell spreading. The PKA phospho-mimetic mutants of ezrin, ezrin-Thr567Asp had no effect on EPAC1-driven cell spreading. Our results indicate that association of ezrin with the actin cytoskeleton and phosphorylation on Thr567 are required, but not sufficient, for PKA and EPAC1 to synergistically promote cell spreading following elevations in intracellular cAMP.

  • Efficacy of B-Type Natriuretic Peptide Is Coupled to Phosphodiesterase 2A in Cardiac Sympathetic Neurons.

    17 October 2018

    Elevated B-type natriuretic peptide (BNP) regulates cGMP-phosphodiesterase activity. Its elevation is regarded as an early compensatory response to cardiac failure where it can facilitate sympathovagal balance and cardiorenal homeostasis. However, recent reports suggest a paradoxical proadrenergic action of BNP. Because phosphodiesterase activity is altered in cardiovascular disease, we tested the hypothesis that BNP might lose its efficacy by minimizing the action of cGMP on downstream pathways coupled to neurotransmission. BNP decreased norepinephrine release from atrial preparations in response to field stimulation and also significantly reduced the heart rate responses to sympathetic nerve stimulation in vitro. Using electrophysiological recording and fluorescence imaging, BNP also reduced the depolarization evoked calcium current and intracellular calcium transient in isolated cardiac sympathetic neurons. Pharmacological manipulations suggested that the reduction in the calcium transient was regulated by a cGMP/protein kinase G pathway. Fluorescence resonance energy transfer measurements for cAMP, and an immunoassay for cGMP, showed that BNP increased cGMP, but not cAMP. In addition, overexpression of phosphodiesterase 2A after adenoviral gene transfer markedly decreased BNP stimulation of cGMP and abrogated the BNP responses to the calcium current, intracellular calcium transient, and neurotransmitter release. These effects were reversed on inhibition of phosphodiesterase 2A. Moreover, phosphodiesterase 2A activity was significantly elevated in stellate neurons from the prohypertensive rat compared with the normotensive control. Our data suggest that abnormally high levels of phosphodiesterase 2A may provide a brake against the inhibitory action of BNP on sympathetic transmission.

  • Noradrenergic neuron-specific overexpression of nNOS in cardiac sympathetic nerves decreases neurotransmission.

    17 October 2018

    Gene transfer of neuronal nitric oxide synthase (nNOS) with nonspecific adenoviral vectors can cause promiscuous transduction. We provide direct evidence that nNOS targeted only to cardiac sympathetic neurons inhibits sympathetic neurotransmission. An adenovirus constructed with a noradrenergic neuron-specific promoter (PRSx8), driving nNOS or enhanced green fluorescence protein (eGFP) gene expression caused exclusive expression in tyrosine hydroxylase (TH) positive rat cardiac sympathetic neurons. There was no detectable leakage of transgene expression in other cell types in the preparation nor did the transgene express in choline acetyltransferase (CHAT)-positive intracardiac cholinergic ganglia. Functionally, Ad.PRS-nNOS gene transfer increased nNOS activity and significantly reduced norephinephrine release evoked by field stimulation of isolated right atria. These effects were reversed by the NOS inhibitor N(omega)-Nitro-L-arginine. Our results demonstrate that noradrenergic cell-specific gene transfer with nNOS can inhibit cardiac sympathetic neurotransmission. This targeted technique may provide a novel method for reducing presynaptic sympathetic hyperactivity.