Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Notch4 reveals a novel mechanism regulating Notch signal transduction.

    7 November 2018

    Notch4 is a divergent member of the Notch family of receptors that is primarily expressed in the vasculature. Its expression implies an important role for Notch4 in the vasculature; however, mice homozygous for the Notch4(d1) knockout allele are viable. Since little is known about the role of Notch4 in the vasculature and how it functions, we further investigated Notch4 in mice and in cultured cells. We found that the Notch4(d1) allele is not null as it expresses a truncated transcript encoding most of the NOTCH4 extracellular domain. In cultured cells, NOTCH4 did not signal in response to ligand. Moreover, NOTCH4 inhibited signalling from the NOTCH1 receptor. This is the first report of cis-inhibition of signalling by another Notch receptor. The NOTCH4 extracellular domain also inhibits NOTCH1 signalling when expressed in cis, raising the possibility that reported Notch4 phenotypes may not be due to loss of NOTCH4 function. To better address the role of NOTCH4 in vivo, we generated a Notch4 null mouse in which the entire coding region was deleted. Notch4 null mice exhibited slightly delayed vessel growth in the retina, consistent with our novel finding that NOTCH4 protein is expressed in the newly formed vasculature. These findings indicate a role of NOTCH4 in fine-tuning the forming vascular plexus.

  • Coordination of skeletal muscle gene expression occurs late in mammalian development.

    7 November 2018

    The acquisition of specialized skeletal muscle fiber phenotypes during development is investigated by systematic measurement of the accumulation of 21 contractile protein mRNAs during hindlimb development in the rat and the human. During early myotube formation in both species there is no coordination of expression of either fast or slow contractile protein isoform genes, but rather some slow, some fast, and some cardiac isoforms are expressed. Some isoforms are not detected at all in early myotubes. From Embryonic Day 19 in the rat, and after 14 weeks in the human, a strong bias toward fast isoform expression is evident for all gene families examined. This results in the establishment of a coordinated fast isoform phenotype at birth in the rat, and by 24 weeks in the human fetus. Unexpectedly, during secondary myotube formation in the rat we observe sudden rises and falls in contractile protein gene output. We interpret these fluctuations in terms of periods of myoblast proliferation followed by synchronized fusion into myotubes. The data presented indicate that each contractile protein gene has its own determinants of mRNA accumulation and that the different myoblast populations which contribute to the developing limb are not intrinsically programmed to produce particular coordinated phenotypes with respect to the non-myosin heavy chain contractile proteins.

  • Abnormal vertebral segmentation and the notch signaling pathway in man.

    7 November 2018

    Abnormal vertebral segmentation (AVS) in man is a relatively common congenital malformation but cannot be subjected to the scientific analysis that is applied in animal models. Nevertheless, some spectacular advances in the cell biology and molecular genetics of somitogenesis in animal models have proved to be directly relevant to human disease. Some advances in our understanding have come through DNA linkage analysis in families demonstrating a clustering of AVS cases, as well as adopting a candidate gene approach. Only rarely do AVS phenotypes follow clear Mendelian inheritance, but three genes-DLL3, MESP2, and LNFG-have now been identified for spondylocostal dysostosis (SCD). SCD is characterized by extensive hemivertebrae, trunkal shortening, and abnormally aligned ribs with points of fusion. In familial cases clearly following a Mendelian pattern, autosomal recessive inheritance is more common than autosomal dominant and the genes identified are functional within the Notch signaling pathway. Other genes within the pathway cause diverse phenotypes such as Alagille syndrome (AGS) and CADASIL, conditions that may have their origin in defective vasculogenesis. Here, we deal mainly with SCD and AGS, and present a new classification system for AVS phenotypes, for which, hitherto, the terminology has been inconsistent and confusing.

  • Cited1 is a bifunctional transcriptional cofactor that regulates early nephronic patterning.

    7 November 2018

    In a screen to identify factors that regulate the conversion of mesenchyme to epithelium during the early stages of nephrogenesis, it was found that the Smad4-interacting transcriptional cofactor, Cited1, is expressed in the condensed cap mesenchyme surrounding the tip of the ureteric bud (UB), is downregulated after differentiation into epithelia, and has the capacity to block UB branching and epithelial morphogenesis in cultured metanephroi. Cited1 represses Wnt/beta-catenin but activates Smad4-dependent transcription involved in TGF-beta and Bmp signaling. By modifying these pathways, Cited1 may coordinate cellular differentiation and survival signals that regulate nephronic patterning in the metanephros.

  • Breaking symmetry: a clinical overview of left-right patterning.

    7 November 2018

    It is increasingly recognized that mutations in genes and pathways critical for left-right (L-R) patterning are involved in common isolated congenital malformations such as congenital heart disease, biliary tract anomalies, renal polycystic disease, and malrotation of the intestine, indicating that disorders of L-R development are far more common than a 1 in 10,000 incidence of heterotaxia might suggest. Understanding L-R patterning disorders requires knowledge of molecular biology, embryology, pediatrics, and internal medicine and is relevant to day-to-day clinical genetics practice. We have reviewed data from mammalian (human and mouse) L-R patterning disorders to provide a clinically oriented perspective that might afford the clinician or researcher additional insights into this diagnostically challenging area.

  • Dll3 pudgy mutation differentially disrupts dynamic expression of somite genes.

    7 November 2018

    Mutations in the notch ligand delta-like 3 have been identified in both the pudgy mouse (Dll3(pu); Kusumi et al.: Nat Genet 19:274-278, 1998) and the human disorder spondylocostal dysostosis (SCD; Bulman et al.: Nat Genet 24:438-441, 2000), and a targeted mutation has been generated (Dll3(neo); Dunwoodie et al.: Development 129:1795-1806, 2002). Vertebral and rib malformations deriving from defects in somitic patterning are key features of these disorders. In the mouse, notch pathway genes such as Lfng, Hes1, Hes7, and Hey2 display dynamic patterns of expression in paraxial mesoderm, cycling in synchrony with somite formation (Aulehla and Johnson: Dev Biol 207:49-61, 1999; Forsberg et al.: Curr Biol 8:1027-1030, 1998; Jouve et al.: Development 127:1421-1429, 2000; McGrew et al.: Curr Biol 8:979-982, 1998; Nakagawa et al.: Dev Biol 216:72-84, 1999). We report here that the Dll3(pu) mutation has different effects on the expression of cycling (Lfng and Hes7) and stage-specific genes (Hey3 and Mesp2). This suggests a more complex situation than a single oscillatory mechanism in somitogenesis and provides an explanation for the unique radiological features of the human DLL3-type of SCD.

  • Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation.

    7 November 2018

    The genetic hierarchies guiding lineage specification and morphogenesis of the mammalian embryonic heart are poorly understood. We now show by gene targeting that murine T-box transcription factor Tbx20 plays a central role in these pathways, and has important activities in both cardiac development and adult function. Loss of Tbx20 results in death of embryos at mid-gestation with grossly abnormal heart morphogenesis. Underlying these disturbances was a severely compromised cardiac transcriptional program, defects in the molecular pre-pattern, reduced expansion of cardiac progenitors and a block to chamber differentiation. Notably, Tbx20-null embryos showed ectopic activation of Tbx2 across the whole heart myogenic field. Tbx2 encodes a transcriptional repressor normally expressed in non-chamber myocardium, and in the atrioventricular canal it has been proposed to inhibit chamber-specific gene expression through competition with positive factor Tbx5. Our data demonstrate a repressive activity for Tbx20 and place it upstream of Tbx2 in the cardiac genetic program. Thus, hierarchical, repressive interactions between Tbx20 and other T-box genes and factors underlie the primary lineage split into chamber and non-chamber myocardium in the forming heart, an early event upon which all subsequent morphogenesis depends. Additional roles for Tbx20 in adult heart integrity and contractile function were revealed by in-vivo cardiac functional analysis of Tbx20 heterozygous mutant mice. These data suggest that mutations in human cardiac transcription factor genes, possibly including TBX20, underlie both congenital heart disease and adult cardiomyopathies.

  • Lakhal-Littleton Group

    10 July 2016

    Iron Homeostasis- Mechanisms and importance in systems (patho)physiology

  • Mann Group

    10 July 2016

    Laboratory of Oscillations & Plasticity

  • McMenamin Group

    16 September 2013

  • Miesenboeck Group

    10 July 2016

    Optical Control of Neurons; Neuronal Control of Behaviour

  • Morris Group

    16 September 2013

    Ultrastructural immunocytochemistry

  • Noble Group

    16 September 2013

    University of Oxford Innovative Systems Biology Project Sponsored by Tsumura

  • Oliver Group

    10 July 2016

    Investigating novel gene function in neurodegeneration and behaviour

  • Parekh Group

    16 September 2013

    Intracellular calcium signalling in health and disease

  • Parker Group

    10 July 2016

    Neural systems and circuits for visual perception

  • Paterson Group

    10 July 2016

    Gene Transfer of Nitric Oxide Synthase into Cardiac Nerves Modulates Neurotransmission