Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Involvement of the medial pallidum in focal myoclonic dystonia: A clinical and neurophysiological case study.

    3 July 2018

    We successfully treated a patient with familial myoclonic dystonia (FMD), which primarily affected his neck muscles, with bilateral deep brain stimulation (DBS) to the medial pallidum, and investigated the role of the medial pallidum in FMD. A patient with FMD underwent bilateral implantation of DBS electrodes during which field potentials (FPs) in the medial pallidum and electromyograms (EMGs) from the affected neck muscles were recorded. The effects of high-frequency DBS to the medial pallidum on the FMD were also assessed by recording EMGs during and immediately after implantation, as well as 6 days and 8 weeks postoperatively. During spontaneous myoclonic episodes, increased FPs oscillating at 4 and 8 Hz were recorded from the medial pallidum; these correlated strongly with phasic EMG activity at the same frequencies in the contralateral affected muscles. The EMG activity was suppressed by stimulating the contralateral medial pallidum at 100 Hz during the operation and continuous bilateral DBS from an implanted stimulator abolished myoclonic activity even more effectively postoperatively. The phasic pallidal activity correlated with and led the myoclonic muscle activity, and the myoclonus was suppressed by bilateral pallidal DBS, suggesting that the medial pallidum was involved in the generation of the myoclonic activity. High-frequency DBS may suppress the myoclonus by desynchronising abnormal pallidal oscillations. This case study has significant clinical implications, because at present, there is no effective treatment for focal myoclonic dystonia.

  • Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity.

    3 July 2018

    Parkinson's disease (PD) is associated with exaggerated oscillatory synchrony in the basal ganglia at frequencies over 8-35 Hz. Studies have demonstrated a suppression of local field potential (LFP) activity in the subthalamic nucleus (STN) upon treatment with the dopamine prodrug, levodopa, with the degree of suppression of power in the 8-35 Hz band correlating with the improvement in combined measures of bradykinesia and rigidity. However, these studies do not explicitly address the question of what is more important in predicting clinical change - synchronisation of neuronal activity or the specific frequency within the 8-35 Hz band over which the latter occurs. In addition, they have not demonstrated a relationship between treatment-induced changes in synchronisation and changes in bradykinesia or rigidity on their own. To this end, we collected and analysed LFP and clinical data in 30 patients with PD. We found significant correlations between levodopa-induced power suppression and rigidity and bradykinesia, when these clinical features were considered separately, but only when power suppression profiles were re-aligned to the frequency of peak synchronisation. Under these circumstances correlations with rigidity persisted despite partialising out the effect of bradykinesia and vice versa. These data suggest that levodopa-induced improvements in both rigidity and bradykinesia scale with the degree of suppression of oscillatory power in the STN LFP, and that this is true irrespective of the frequency at which synchronisation occurs across a broad band from 8-35 Hz.

  • Effect of GPi DBS on functional imaging of the brain in dystonia.

    3 July 2018

    Five patients with idiopathic dystonic conditions, treated successfully with deep brain stimulation (DBS) of the globus pallidus internus (GPi), were studied using single-photon emission tomography (SPET) in order to evaluate brain perfusion in the presence and absence of DBS. Comparison was made between the "on" and "off" DBS scans on an individual basis and also as part of a group analysis. Whilst the individual data suggested great regional variation in cerebral perfusion between individuals, the results of the group analysis revealed several topographically similar areas of the brain where relative hyperperfusion in the absence of DBS was common to all patients. Based on these results we postulate on possible mechanisms for this phenomenon.

  • Abnormal thalamocortical dynamics may be altered by deep brain stimulation: using magnetoencephalography to study phantom limb pain.

    3 July 2018

    Deep brain stimulation (DBS) is used to alleviate chronic pain. Using magnetoencephalography (MEG) to study the mechanisms of DBS for pain is difficult because of the artefact caused by the stimulator. We were able to record activity over the occipital lobe of a patient using DBS for phantom limb pain during presentation of a visual stimulus. This demonstrates that MEG can be used to study patients undergoing DBS provided control stimuli are used to check the reliability of the data. We then asked the patient to rate his pain during and off DBS. Correlations were found between these ratings and power in theta (6-9) and beta bands (12-30). Further, there was a tendency for frequencies under 25 Hz to correlate with each other after a period off stimulation compared with immediately after DBS. The results are interpreted as reflecting abnormal thalamocortical dynamics, previously implicated in painful syndromes.

  • Changes in cognition and health-related quality of life with unilateral thalamotomy for Parkinsonian tremor.

    3 July 2018

    Cognitive functioning and health-related quality of life were assessed pre- and post-operatively in a consecutive series of 31 Parkinson's disease patients who underwent stereotactic unilateral thalamotomy (22 left-sided, 9 right-sided) for tremor alleviation. Neuropsychological functions assessed included verbal and visual memory, language and speech production, verbal and non-verbal reasoning, and attention and working memory. Health-related quality of life measures included both general and disease-specific questionnaires. We found a statistically significant post-operative decline in phonetic verbal fluency scores for left-operated patients, as well as improvements in self-ratings of stigma and bodily discomfort on the disease-specific quality of life questionnaire. These findings suggest that thalamotomy, when indicated, has limited cognitive sequelae and may result in improved quality of life in areas specific to Parkinson's disease.

  • Using magnetoencephalography to investigate brain activity during high frequency deep brain stimulation in a cluster headache patient.

    3 July 2018

    PURPOSE: Treatment-resistant cluster headache can be successfully alleviated with deep brain stimulation (DBS) of the posterior hypothalamus [1]. Magnetoencephalography (MEG) is a non-invasive functional imaging technique with both high temporal and high spatial resolution. However, it is not known whether the inherent electromagnetic (EM) noise produced by high frequency DBS is compatible with MEG. MATERIALS AND METHODS: We used MEG to record brain activity in an asymptomatic cluster headache patient with a DBS implanted in the right posterior hypothalamus while he made small movements during periods of no stimulation, 7 Hz stimulation and 180 Hz stimulation. RESULTS: We were able to measure brain activity successfully both during low and high frequency stimulation. Analysis of the MEG recordings showed similar activation in motor areas in during the patient's movements as expected. We also observed similar activations in cortical and subcortical areas that have previously been reported to be associated with pain when the patient's stimulator was turned on or off [2,3]. CONCLUSION: These results show that MEG can be used to measure brain activity regardless of the presence of high frequency deep brain stimulation.