Search results
Found 12805 matches for
K(ATP) channels and islet hormone secretion: new insights and controversies.
ATP-sensitive potassium channels (K(ATP) channels) link cell metabolism to electrical activity by controlling the cell membrane potential. They participate in many physiological processes but have a particularly important role in systemic glucose homeostasis by regulating hormone secretion from pancreatic islet cells. Glucose-induced closure of K(ATP) channels is crucial for insulin secretion. Emerging data suggest that K(ATP) channels also play a key part in glucagon secretion, although precisely how they do so remains controversial. This Review highlights the role of K(ATP) channels in insulin and glucagon secretion. We discuss how K(ATP) channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations. The various hypotheses concerning the role of K(ATP) channels in glucagon release are also reviewed. Furthermore, we illustrate how mutations in K(ATP) channel genes can cause hyposecretion or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, and how defective metabolic regulation of the channel may underlie the hypoinsulinaemia and the hyperglucagonaemia that characterize type 2 diabetes mellitus. Finally, we outline how sulphonylureas, which inhibit K(ATP) channels, stimulate insulin secretion in patients with neonatal diabetes mellitus or type 2 diabetes mellitus, and suggest their potential use to target the glucagon secretory defects found in diabetes mellitus.
Changes in gene expression associated with FTO overexpression in mice.
Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected.
Low extracellular magnesium does not impair glucose-stimulated insulin secretion.
There is an increasing amount of clinical evidence that hypomagnesemia (serum Mg2+ levels < 0.7 mmol/l) contributes to type 2 diabetes mellitus pathogenesis. Amongst other hypotheses, it has been suggested that Mg2+ deficiency affects insulin secretion. The aim of this study was, therefore, to investigate the acute effects of extracellular Mg2+ on glucose-stimulated insulin secretion in primary mouse islets of Langerhans and the rat insulinoma INS-1 cell line. Here we show that acute lowering of extracellular Mg2+ concentrations from 1.0 mM to 0.5 mM did not affect glucose-stimulated insulin secretion in islets or in insulin-secreting INS-1 cells. The expression of key genes in the insulin secretory pathway (e.g. Gck, Abcc8) was also unchanged in both experimental models. Knockdown of the most abundant Mg2+ channel Trpm7 by siRNAs in INS-1 cells resulted in a 3-fold increase in insulin secretion at stimulatory glucose conditions compared to mock-transfected cells. Our data suggest that insulin secretion is not affected by acute lowering of extracellular Mg2+ concentrations.
Correction: Systemic Administration of Glibenclamide Fails to Achieve Therapeutic Levels in the Brain and Cerebrospinal Fluid of Rodents.
[This corrects the article DOI: 10.1371/journal.pone.0134476.].
Mice expressing a human K(ATP) channel mutation have altered channel ATP sensitivity but no cardiac abnormalities.
AIMS/HYPOTHESIS: Patients with severe gain-of-function mutations in the Kir6.2 subunit of the ATP-sensitive potassium (K(ATP)) channel, have neonatal diabetes, muscle hypotonia and mental and motor developmental delay-a condition known as iDEND syndrome. However, despite the fact that Kir6.2 forms the pore of the cardiac K(ATP) channel, patients show no obvious cardiac symptoms. The aim of this project was to use a mouse model of iDEND syndrome to determine whether iDEND mutations affect cardiac function and cardiac K(ATP) channel ATP sensitivity. METHODS: We performed patch-clamp and in vivo cine-MRI studies on mice in which the most common iDEND mutation (Kir6.2-V59M) was targeted to cardiac muscle using Cre-lox technology (m-V59M mice). RESULTS: Patch-clamp studies of isolated cardiac myocytes revealed a markedly reduced K(ATP) channel sensitivity to MgATP inhibition in m-V59M mice (IC(50) 62 μmol/l compared with 13 μmol/l for littermate controls). In vivo cine-MRI revealed there were no gross morphological differences and no differences in heart rate, end diastolic volume, end systolic volume, stroke volume, ejection fraction, cardiac output or wall thickening between m-V59M and control hearts, either under resting conditions or under dobutamine stress. CONCLUSIONS/INTERPRETATION: The common iDEND mutation Kir6.2-V59M decreases ATP block of cardiac K(ATP) channels but was without obvious effect on heart function, suggesting that metabolic changes fail to open the mutated channel to an extent that affects function (at least in the absence of ischaemia). This may have implications for the choice of sulfonylurea used to treat neonatal diabetes.
Increased NEFA levels reduce blood Mg2+ in hypertriacylglycerolaemic states via direct binding of NEFA to Mg2.
AIMS/HYPOTHESIS: The blood triacylglycerol level is one of the main determinants of blood Mg2+ concentration in individuals with type 2 diabetes. Hypomagnesaemia (blood Mg2+ concentration <0.7 mmol/l) has serious consequences as it increases the risk of developing type 2 diabetes and accelerates progression of the disease. This study aimed to determine the mechanism by which triacylglycerol levels affect blood Mg2+ concentrations. METHODS: Using samples from 285 overweight individuals (BMI >27 kg/m2) who participated in the 300-Obesity study (an observational cross-sectional cohort study, as part of the Human Functional Genetics Projects), we investigated the association between serum Mg2+ with laboratory variables, including an extensive lipid profile. In a separate set of studies, hyperlipidaemia was induced in mice and in healthy humans via an oral lipid load, and blood Mg2+, triacylglycerol and NEFA concentrations were measured using colourimetric assays. In vitro, NEFAs harvested from albumin were added in increasing concentrations to several Mg2+-containing solutions to study the direct interaction between Mg2+ and NEFAs. RESULTS: In the cohort of overweight individuals, serum Mg2+ levels were inversely correlated with triacylglycerols incorporated in large VLDL particles (r = -0.159, p ≤ 0.01). After lipid loading, we observed a postprandial increase in plasma triacylglycerol and NEFA levels and a reciprocal reduction in blood Mg2+ concentration both in mice (Δ plasma Mg2+ -0.31 mmol/l at 4 h post oral gavage) and in healthy humans (Δ plasma Mg2+ -0.07 mmol/l at 6 h post lipid intake). Further, in vitro experiments revealed that the decrease in plasma Mg2+ may be explained by direct binding of Mg2+ to NEFAs. Moreover, Mg2+ was found to bind to albumin in a NEFA-dependent manner, evidenced by the fact that Mg2+ did not bind to fatty-acid-free albumin. The NEFA-dependent reduction in the free Mg2+ concentration was not affected by the presence of physiological concentrations of other cations. CONCLUSIONS/INTERPRETATION: This study shows that elevated NEFA and triacylglycerol levels directly reduce blood Mg2+ levels, in part explaining the high prevalence of hypomagnesaemia in metabolic disorders. We show that blood NEFA level affects the free Mg2+ concentration, and therefore, our data challenge how the fractional excretion of Mg2+ is calculated and interpreted in the clinic.
New insights into KATP channel gene mutations and neonatal diabetes mellitus.
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
β-Cell dysfunction in diabetes: a crisis of identity?
Type 2 diabetes is characterized by insulin resistance and a progressive loss of β-cell function induced by a combination of both β-cell loss and impaired insulin secretion from remaining β-cells. Here, we review the fate of the β-cell under chronic hyperglycaemic conditions with regard to β-cell mass, gene expression, hormone content, secretory capacity and the ability to de- or transdifferentiate into other cell types. We compare data from various in vivo and in vitro models of diabetes with a novel mouse model of inducible, reversible hyperglycaemia (βV59M mice). We suggest that insulin staining using standard histological methods may not always provide an accurate estimation of β-cell mass or number. We consider how β-cell identity is best defined, and whether expression of transcription factors normally found in islet progenitor cells, or in α-cells, implies that mature β-cells have undergone dedifferentiation or transdifferentiation. We propose that even in long-standing diabetes, β-cells predominantly remain β-cells-but not as we know them.
Neonatal Diabetes and the KATP Channel: From Mutation to Therapy.
Activating mutations in one of the two subunits of the ATP-sensitive potassium (KATP) channel cause neonatal diabetes (ND). This may be either transient or permanent and, in approximately 20% of patients, is associated with neurodevelopmental delay. In most patients, switching from insulin to oral sulfonylurea therapy improves glycemic control and ameliorates some of the neurological disabilities. Here, we review how KATP channel mutations lead to the varied clinical phenotype, how sulfonylureas exert their therapeutic effects, and why their efficacy varies with individual mutations.
Mutational analysis of CLC-5, cofilin and CLC-4 in patients with Dent's disease.
BACKGROUND/AIMS: Dent's disease is caused by mutations in the chloride/proton antiporter, CLC-5, or oculo-cerebro-renal-syndrome-of-Lowe (OCRL1) genes. METHODS: Eighteen probands with Dent's disease were investigated for mutations in CLC-5 and two of its interacting proteins, CLC-4 and cofilin. Wild-type and mutant CLC-5s were assessed in kidney cells. Urinary calcium excretion following an oral calcium challenge was studied in one family. RESULTS: Seven different CLC-5 mutations consisting of two nonsense mutations (Arg347Stop and Arg718Stop), two missense mutations (Ser244Leu and Arg516Trp), one intron 3 donor splice site mutation, one deletion-insertion (nt930delTCinsA) and an in-frame deletion (523delVal) were identified in 8 patients. In the remaining 10 patients, DNA sequence abnormalities were not detected in the coding regions of CLC-4 or cofilin, and were independently excluded for OCRL1. Patients with CLC-5 mutations were phenotypically similar to those without. The donor splice site CLC-5 mutation resulted in exon 3 skipping. Electrophysiology demonstrated that the 523delVal CLC-5 mutation abolished CLC-5-mediated chloride conductance. Sixty percent of women with the CLC-5 deletion-insertion had nephrolithiasis, although calcium excretion before and after oral calcium challenge was similar to that in unaffected females. CONCLUSIONS: Three novel CLC-5 mutations were identified, and mutations in OCRL1, CLC-4 and cofilin excluded in causing Dent's disease in this patient cohort.
Long-term exposure to glucose and lipids inhibits glucose-induced insulin secretion downstream of granule fusion with plasma membrane.
Mouse beta-cells cultured at 15 mmol/l glucose for 72 h had reduced ATP-sensitive K+ (K(ATP)) channel activity (-30%), increased voltage-gated Ca2+ currents, higher intracellular free Ca2+ concentration ([Ca2+]i; +160%), more exocytosis (monitored by capacitance measurements, +100%), and greater insulin content (+230%) than those cultured at 4.5 mmol/l glucose. However, they released 20% less insulin when challenged with 20 mmol/l glucose. Glucose-induced (20 mmol/l) insulin secretion was reduced by 60-90% in islets cocultured at 4.5 or 15 mmol/l glucose and either oleate or palmitate (0.5 mmol/l). Free fatty acid (FFA)-induced inhibition of secretion was not associated with any major changes in [Ca2+]i or islet ATP content. Palmitate stimulated exocytosis by twofold or more but reduced K+-induced secretion by up to 60%. Basal (1 mmol/l glucose) K(ATP) channel activity was 40% lower in islets cultured at 4.5 mmol/l glucose plus palmitate and 60% lower in islets cultured at 15 mmol/l glucose plus either of the FFAs. Insulin content decreased by 75% in islets exposed to FFAs in the presence of high (15 mmol/l), but not low (4.5 mmol/l), glucose concentrations, but the number of secretory granules was unchanged. FFA-induced inhibition of insulin secretion was not associated with increased transcript levels of the apoptosis markers Bax (BclII-associated X protein) and caspase-3. We conclude that glucose and FFAs reduce insulin secretion by interference with the exit of insulin via the fusion pore.
Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux.
Closure of ATP-sensitive K+ channels (KATP channels) is a key step in glucose-stimulated insulin secretion. The precise mechanism(s) by which glucose metabolism regulates KATP channel activity, however, remains controversial. It is widely believed that the principal determinants are the intracellular concentrations of the metabolic ligands, ATP and ADP, which have opposing actions on KATP channels, with ATP closing and MgADP opening the channel. However, the sensitivity of the channel to these nucleotides in the intact cell, and their relative contribution to the regulation of channel activity, remains unclear. The precise role of phosphoinositides and long-chain acyl-CoA esters, which are capable of modulating the channel ATP sensitivity, is also uncertain. Furthermore, it is still a matter of debate whether it is changes in the concentration of ATP, of MgADP, or of other agents, which couples glucose metabolism to KATP channel activity. In this article, we review current knowledge of the metabolic regulation of the KATP channel and provide evidence that MgADP (or MgATP hydrolysis), acting at the regulatory subunit of the channel, shifts the ATP concentration-response curve into a range in which the channel pore can respond to dynamic changes in cytosolic ATP. This metabolic pas de deux orchestrates the pivotal role of ATP in metabolic regulation of the KATP channel.
Functional identification of islet cell types by electrophysiological fingerprinting.
The α-, β- and δ-cells of the pancreatic islet exhibit different electrophysiological features. We used a large dataset of whole-cell patch-clamp recordings from cells in intact mouse islets (N = 288 recordings) to investigate whether it is possible to reliably identify cell type (α, β or δ) based on their electrophysiological characteristics. We quantified 15 electrophysiological variables in each recorded cell. Individually, none of the variables could reliably distinguish the cell types. We therefore constructed a logistic regression model that included all quantified variables, to determine whether they could together identify cell type. The model identified cell type with 94% accuracy. This model was applied to a dataset of cells recorded from hyperglycaemic βV59M mice; it correctly identified cell type in all cells and was able to distinguish cells that co-expressed insulin and glucagon. Based on this revised functional identification, we were able to improve conductance-based models of the electrical activity in α-cells and generate a model of δ-cell electrical activity. These new models could faithfully emulate α- and δ-cell electrical activity recorded experimentally.
Cardiac Dysfunction and Metabolic Inflexibility in a Mouse Model of Diabetes Without Dyslipidemia.
Diabetes is a well-established risk factor for heart disease, leading to impaired cardiac function and a metabolic switch toward fatty acid usage. In this study, we investigated if hyperglycemia/hypoinsulinemia in the absence of dyslipidemia is sufficient to drive these changes and if they can be reversed by restoring euglycemia. Using the βV59M mouse model, in which diabetes can be rapidly induced and reversed, we show that stroke volume and cardiac output were reduced within 2 weeks of diabetes induction. Flux through pyruvate dehydrogenase was decreased, as measured in vivo by hyperpolarized [1-13C]pyruvate MRS. Metabolomics showed accumulation of pyruvate, lactate, alanine, tricarboxyclic acid cycle metabolites, and branched-chain amino acids. Myristic and palmitoleic acid were decreased. Proteomics revealed proteins involved in fatty acid metabolism were increased, whereas those involved in glucose metabolism decreased. Western blotting showed enhanced pyruvate dehydrogenase kinase 4 (PDK4) and uncoupling protein 3 (UCP3) expression. Elevated PDK4 and UCP3 and reduced pyruvate usage were present 24 h after diabetes induction. The observed effects were independent of dyslipidemia, as mice showed no evidence of elevated serum triglycerides or lipid accumulation in peripheral organs (including the heart). The effects of diabetes were reversible, as glibenclamide therapy restored euglycemia, cardiac metabolism and function, and PDK4/UCP3 levels.
Binding of sulphonylureas to plasma proteins - A KATP channel perspective.
Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration <0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug's therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.
FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting.
Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16-48 hour) fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour) fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.
Overexpression of Fto leads to increased food intake and results in obesity.
Genome-wide association studies have identified SNPs within FTO, the human fat mass and obesity-associated gene, that are strongly associated with obesity. Individuals homozygous for the at-risk rs9939609 A allele weigh, on average, ~3 kg more than individuals with the low-risk T allele. Mice that lack FTO function and/or Fto expression display increased energy expenditure and a lean phenotype. We show here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or a high-fat diet. Our results suggest that increased body mass results primarily from increased food intake. Mice with increased Fto expression on a high-fat diet develop glucose intolerance. This study provides the first direct evidence that increased Fto expression causes obesity in mice.