Search results
Found 12698 matches for
Mapping brain structural differences and neuroreceptor correlates in Parkinson's disease visual hallucinations.
Parkinson's psychosis (PDP) describes a spectrum of symptoms that may arise in Parkinson's disease (PD) including visual hallucinations (VH). Imaging studies investigating the neural correlates of PDP have been inconsistent in their findings, due to differences in study design and limitations of scale. Here we use empirical Bayes harmonisation to pool together structural imaging data from multiple research groups into a large-scale mega-analysis, allowing us to identify cortical regions and networks involved in VH and their relation to receptor binding. Differences of morphometrics analysed show a wider cortical involvement underlying VH than previously recognised, including primary visual cortex and surrounding regions, and the hippocampus, independent of its role in cognitive decline. Structural covariance analyses point to the involvement of the attentional control networks in PD-VH, while associations with receptor density maps suggest neurotransmitter loss may be linked to the cortical changes.
Olfactory Testing in Parkinson Disease and REM Behavior Disorder: A Machine Learning Approach.
OBJECTIVE: We sought to identify an abbreviated test of impaired olfaction amenable for use in busy clinical environments in prodromal (isolated REM sleep behavior disorder [iRBD]) and manifest Parkinson disease (PD). METHODS: Eight hundred ninety individuals with PD and 313 controls in the Discovery cohort study underwent Sniffin' Stick odor identification assessment. Random forests were initially trained to distinguish individuals with poor (functional anosmia/hyposmia) and good (normosmia/super-smeller) smell ability using all 16 Sniffin' Sticks. Models were retrained using the top 3 sticks ranked by order of predictor importance. One randomly selected 3-stick model was tested in a second independent PD dataset (n = 452) and in 2 iRBD datasets (Discovery n = 241, Marburg n = 37) before being compared to previously described abbreviated Sniffin' Stick combinations. RESULTS: In differentiating poor from good smell ability, the overall area under the curve (AUC) value associated with the top 3 sticks (anise/licorice/banana) was 0.95 in the Development dataset (sensitivity 90%, specificity 92%, positive predictive value 92%, negative predictive value 90%). Internal and external validation confirmed AUCs ≥0.90. The combination of the 3-stick model determined poor smell, and an RBD screening questionnaire score of ≥5 separated those with iRBD from controls with a sensitivity, specificity, positive predictive value, and negative predictive value of 65%, 100%, 100%, and 30%. CONCLUSIONS: Our 3-Sniffin'-Stick model holds potential utility as a brief screening test in the stratification of individuals with PD and iRBD according to olfactory dysfunction. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that a 3-Sniffin'-Stick model distinguishes individuals with poor and good smell ability and can be used to screen for individuals with iRBD.
Automated Movement Detection with Dirichlet Process Mixture Models and Electromyography
Numerous sleep disorders are characterised by movement during sleep, these include rapid-eye movement sleep behaviour disorder (RBD) and periodic limb movement disorder. The process of diagnosing movement related sleep disorders requires laborious and time-consuming visual analysis of sleep recordings. This process involves sleep clinicians visually inspecting electromyogram (EMG) signals to identify abnormal movements. The distribution of characteristics that represent movement can be diverse and varied, ranging from brief moments of tensing to violent outbursts. This study proposes a framework for automated limb-movement detection by fusing data from two EMG sensors (from the left and right limb) through a Dirichlet process mixture model. Several features are extracted from 10 second mini-epochs, where each mini-epoch has been classified as 'leg-movement' or 'no leg-movement' based on annotations of movement from sleep clinicians. The distributions of the features from each category can be estimated accurately using Gaussian mixture models with the Dirichlet process as a prior. The available dataset includes 36 participants that have all been diagnosed with RBD. The performance of this framework was evaluated by a 10-fold cross validation scheme (participant independent). The study was compared to a random forest model and outperformed it with a mean accuracy, sensitivity, and specificity of 94%, 48%, and 95%, respectively. These results demonstrate the ability of this framework to automate the detection of limb movement for the potential application of assisting clinical diagnosis and decision-making.
Exploration of whether socioeconomic factors affect the results of priority setting partnerships: updating the top 10 research priorities for the management of Parkinson's in an international setting.
OBJECTIVES: Explore whether socioeconomic differences of patients affect the prioritisation of pre-existing research questions and explore the agreement between healthcare professionals (HCP) and patients in priority setting partnerships (PSPs). DESIGN AND SETTING: Prospective, three centre survey across UK (400 participants), Tuebingen (176 participants) and Luxembourg (303 participants). People with Parkinson's (PwP), research participants, relatives and HCP associated with three Parkinson's cohort studies were invited to participate, along with linked centres (clinical care settings, research groups, charities). Responders were encouraged to pass on the survey to friends/families/carers. METHODS: The survey involved rating the importance of research questions on a Likert scale, allowing for the generation of one new question participants felt was particularly important. Collection of demographic information allowed for comparisons of priorities across a range of socioeconomic variables; the top 10 research priorities for each group were then compared. Questions added by participants were subject to a thematic analysis. RESULTS: 879 participants completed the survey (58% PwP, 22% family/friends, 13% HCP, 4% carers). Finding the best form of physiotherapy for PwP was the number one priority across the majority of analyses. HCP were the only subgroup not to place physiotherapy in the top 10. Factors most likely to affect prioritisation in PwP included educational level, presence of carer support and disease duration. There was little difference between other socioeconomic categories. CONCLUSIONS: Socioeconomic factors modestly influenced some research priority ratings but did not significantly affect the top priority in most comparisons. Future studies must ensure patients from a range of socioeconomic backgrounds are recruited, ensuring results generalisable to the public while also identifying any key disparities in prioritisation. PSP should also take care that HCP do not skew results during prioritisation of questions, as in this study the most important priority to patients was not identified by professionals.
Use of human intravenous immunoglobulin in lower motor neuron syndromes.
OBJECTIVE: To determine whether patients with the clinical phenotype of multifocal motor neuropathy but without the electrophysiological criteria for conduction block would respond to intravenous immunoglobulin (IVIg). METHODS: Ten patients were selected with a slowly progressive, asymmetric, lower motor neuron disorder, and were treated prospectively with IVIg at a dose of 2g/kg over 5 days. All subjects had neurophysiological testing to look for evidence of conduction block before treatment. Muscle strength was assessed by MRC grades and hand held myometry, measuring pinch and grip strength. A 20% increase in both pinch and grip myometry was considered a positive response. RESULTS: In no patient was conduction block detected. Four of the 10 patients showed a positive response to IVIg, with the best response occurring in two patients who presented with weakness but without severe muscle wasting. Three of the four responders have continued to receive IVIg for a mean period of 17 months (range 15-24 months), with continued effect. The response to IVIg was not related to the presence of anti-GM1 antiganglioside antibodies, but responders had a selective pattern of muscle weakness and normal (>90% predicted) vital capacity. CONCLUSION: The findings suggest that a course of IVIg should be considered in patients with the clinical phenotype of multifocal motor neuropathy but without neurophysiological evidence of conduction block.
Genetics of validated Parkinson's disease subtypes in the Oxford Discovery and Tracking Parkinson's cohorts.
OBJECTIVES: To explore the genetics of four Parkinson's disease (PD) subtypes that have been previously described in two large cohorts of patients with recently diagnosed PD. These subtypes came from a data-driven cluster analysis of phenotypic variables. METHODS: We looked at the frequency of genetic mutations in glucocerebrosidase (GBA) and leucine-rich repeat kinase 2 against our subtypes. Then we calculated Genetic Risk Scores (GRS) for PD, multiple system atrophy, progressive supranuclear palsy, Lewy body dementia, and Alzheimer's disease. These GRSs were regressed against the probability of belonging to a subtype in the two independent cohorts and we calculated q-values as an adjustment for multiple testing across four subtypes. We also carried out a Genome-Wide Association Study (GWAS) of belonging to a subtype. RESULTS: A severe disease subtype had the highest rates of patients carrying GBA mutations while the mild disease subtype had the lowest rates (p=0.009). Using the GRS, we found a severe disease subtype had a reduced genetic risk of PD (p=0.004 and q=0.015). In our GWAS no individual variants met genome wide significance (<5×10e-8) although four variants require further follow-up, meeting a threshold of <1×10e-6. CONCLUSIONS: We have found that four previously defined PD subtypes have different genetic determinants which will help to inform future studies looking at underlying disease mechanisms and pathogenesis in these different subtypes of disease.
Age at onset as stratifier in idiopathic Parkinson's disease - effect of ageing and polygenic risk score on clinical phenotypes.
Several phenotypic differences observed in Parkinson's disease (PD) patients have been linked to age at onset (AAO). We endeavoured to find out whether these differences are due to the ageing process itself by using a combined dataset of idiopathic PD (n = 430) and healthy controls (HC; n = 556) excluding carriers of known PD-linked genetic mutations in both groups. We found several significant effects of AAO on motor and non-motor symptoms in PD, but when comparing the effects of age on these symptoms with HC (using age at assessment, AAA), only positive associations of AAA with burden of motor symptoms and cognitive impairment were significantly different between PD vs HC. Furthermore, we explored a potential effect of polygenic risk score (PRS) on clinical phenotype and identified a significant inverse correlation of AAO and PRS in PD. No significant association between PRS and severity of clinical symptoms was found. We conclude that the observed non-motor phenotypic differences in PD based on AAO are largely driven by the ageing process itself and not by a specific profile of neurodegeneration linked to AAO in the idiopathic PD patients.
Reward sensitivity deficits modulated by dopamine are associated with apathy in Parkinson's disease.
Apathy is a debilitating and under-recognized condition that has a significant impact in many neurodegenerative disorders. In Parkinson's disease, it is now known to contribute to worse outcomes and a reduced quality of life for patients and carers, adding to health costs and extending disease burden. However, despite its clinical importance, there remains limited understanding of mechanisms underlying apathy. Here we investigated if insensitivity to reward might be a contributory factor and examined how this relates to severity of clinical symptoms. To do this we created novel ocular measures that indexed motivation level using pupillary and saccadic response to monetary incentives, allowing reward sensitivity to be evaluated objectively. This approach was tested in 40 patients with Parkinson's disease, 31 elderly age-matched control participants and 20 young healthy volunteers. Thirty patients were examined ON and OFF their dopaminergic medication in two counterbalanced sessions, so that the effect of dopamine on reward sensitivity could be assessed. Pupillary dilation to increasing levels of monetary reward on offer provided quantifiable metrics of motivation in healthy subjects as well as patients. Moreover, pupillary reward sensitivity declined with age. In Parkinson's disease, reduced pupillary modulation by incentives was predictive of apathy severity, and independent of motor impairment and autonomic dysfunction as assessed using overnight heart rate variability measures. Reward sensitivity was further modulated by dopaminergic state, with blunted sensitivity when patients were OFF dopaminergic drugs, both in pupillary response and saccadic peak velocity response to reward. These findings suggest that reward insensitivity may be a contributory mechanism to apathy and provide potential new clinical measures for improved diagnosis and monitoring of apathy.media-1vid110.1093/brain/aww188_video_abstractaww188_video_abstract.
SMPD1 variants do not have a major role in rapid eye movement sleep behavior disorder.
Mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene were reported to be associated with Parkinson's disease and dementia with Lewy bodies. In the current study, we aimed to evaluate the role of SMPD1 variants in isolated rapid eye movement sleep behavior disorder (iRBD). SMPD1 and its untranslated regions were sequenced using targeted next-generation sequencing in 959 iRBD patients and 1287 controls from European descent. Our study reports no statistically significant association of SMPD1 variants and iRBD. It is hence unlikely that SMPD1 plays a major role in iRBD.
REM sleep behavior disorder (RBD).
Since its first description in 1986 by Dr. Carlos Schenck, and his group's subsequent report of the delayed emergence of a Parkinsonian disorder in idiopathic RBD patients one decade later, RBD has emerged in recent years as one of the most promising markers of prodromal Parkinson's (References 2, 3). RBD is present in 25-58% of patients with Parkinson's disease and up to 90% of those with Dementia with Lewy Bodies (DLB) or Multiple System Atrophy (MSA). In a substantial proportion of these patients RBD onset occurs before motor symptoms. Critically, when seen in isolation, RBD is a highly specific marker of future synucleinopathy: long-term cohort studies indicate that more than 80% of people who develop isolated RBD will go on to develop an alpha-synuclein related neurodegenerative disorder. Recently, the largest ever study of 1280 polysomnographically-diagnosed RBD subjects from 24 International RBD Study Group sleep centres by a single author group, found an overall conversion rate from iRBD to an overt neurodegenerative syndrome of 6.3% per year. RBD is therefore common, representative of a large proportion of sporadic disease, and provides a unique window for the study of prodromal neurodegeneration, whether it be Parkinson's or Dementia.
Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease.
We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinson's disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95% confidence interval (CI) = 2.55-4.30; P = 2 × 10(-16)). We also show six risk loci associated with proximal gene expression or DNA methylation.
Predictors of motor complications in early Parkinson's disease: A prospective cohort study.
OBJECTIVE: The objective of this study was to identify clinical predictors of motor complications (dyskinesia and motor fluctuations) of levodopa in a prospectively recruited PD cohort using longitudinal analysis. METHODS: An inception cohort (Oxford Discovery) of 734 patients was followed to a maximum of 10 years from diagnosis using a discrete-time survival analysis. A subset analysis was used to validate an online dyskinesia-risk calculator developed from the results of the Stalevo Reduction in Dyskinesia Evaluation PD trial. RESULTS: A total of 186 cases of dyskinesia and 254 cases of motor fluctuations were observed. Dyskinesia incidence increased with time (risk per 100 participants [95% confidence interval] 13 [11-16] <3.5 years, 16 [13-21] 3.5-5.0 years, 19 [14-26] 5-6.5 years, and 23 [16-33] >6.5 years from diagnosis). Motor complication predictors were grouped as medication predictors, disease predictors and patient predictors. Baseline nonmotor feature severity, low mood, anxiety, and age at symptom onset were associated with motor complications among a number of previously identified predictors. Replication of the Stalevo Reduction in Dyskinesia Evaluation PD calculator was reasonable with the area under the curve for dyskinesia risk score as a predictor of dyskinesia being 0.68 (95% confidence interval, 0.55-0.81). CONCLUSIONS: This study quantifies risk of motor complications, finds consistent predictors, and demonstrates the novel finding that nonmotor features of PD, particularly low mood and anxiety, are significant risk factors for motor complications. Further validation of dyskinesia risk scores are required as well as evidence to determine if the routine use of such scores can be clinically valuable in enhancing patient care and quality of life. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Predicting motor, cognitive & functional impairment in Parkinson's.
OBJECTIVE: We recently demonstrated that 998 features derived from a simple 7-minute smartphone test could distinguish between controls, people with Parkinson's and people with idiopathic Rapid Eye Movement sleep behavior disorder, with mean sensitivity/specificity values of 84.6-91.9%. Here, we investigate whether the same smartphone features can be used to predict future clinically relevant outcomes in early Parkinson's. METHODS: A total of 237 participants with Parkinson's (mean (SD) disease duration 3.5 (2.2) years) in the Oxford Discovery cohort performed smartphone tests in clinic and at home. Each test assessed voice, balance, gait, reaction time, dexterity, rest, and postural tremor. In addition, standard motor, cognitive and functional assessments and questionnaires were administered in clinic. Machine learning algorithms were trained to predict the onset of clinical outcomes provided at the next 18-month follow-up visit using baseline smartphone recordings alone. The accuracy of model predictions was assessed using 10-fold and subject-wise cross validation schemes. RESULTS: Baseline smartphone tests predicted the new onset of falls, freezing, postural instability, cognitive impairment, and functional impairment at 18 months. For all outcome predictions AUC values were greater than 0.90 for 10-fold cross validation using all smartphone features. Using only the 30 most salient features, AUC values greater than 0.75 were obtained. INTERPRETATION: We demonstrate the ability to predict key future clinical outcomes using a simple smartphone test. This work has the potential to introduce individualized predictions to routine care, helping to target interventions to those most likely to benefit, with the aim of improving their outcome.
Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.
SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep behaviour disorder and Parkinson's disease relative to each other and to controls. Connectivity measures of basal ganglia network dysfunction differentiated both rapid eye movement sleep behaviour disorder and Parkinson's disease from controls with high sensitivity (96%) and specificity (74% for rapid eye movement sleep behaviour disorder, 78% for Parkinson's disease), indicating its potential as an indicator of early basal ganglia dysfunction. Rapid eye movement sleep behaviour disorder was indistinguishable from Parkinson's disease on resting state functional magnetic resonance imaging despite obvious differences on dopamine transported single photon emission computerized tomography. Basal ganglia connectivity is a promising biomarker for the detection of early basal ganglia network dysfunction, and may help to identify patients at risk of developing Parkinson's disease in the future. Future risk stratification using a polymodal approach could combine basal ganglia network connectivity with clinical and other imaging measures, with important implications for future neuroprotective trials in rapid eye movement sleep behaviour disorder.
Dopamine enhances willingness to exert effort for reward in Parkinson's disease.
Parkinson's disease (PD) is traditionally conceptualised as a disorder of movement, but recent data suggest that motivational deficits may be more pervasive than previously thought. Here, we ask whether subclinical deficits in incentivised decision-making are present in PD and, if so, whether dopaminergic therapy ameliorates such deficits. We devised a novel paradigm in which participants decided whether they were willing to squeeze a hand-held dynamometer at varying levels of force for different magnitudes of reward. For each participant, we estimated the effort level at which the probability of accepting a reward was 50% - the effort 'indifference point'. Patients with PD (N = 26) were tested ON and OFF their usual dopaminergic medication, and their performance compared to those of age-matched controls (N = 26). No participant was clinically apathetic as defined by the Lille Apathy Rating Scale (LARS). Our data show that, regardless of medication status, patients with PD chose to engage less effort than controls for the lowest reward. Overall, however, dopamine had a motivating effect on participants' choice behaviour - patients with PD chose to invest more effort for a given reward when they were in the ON relative to OFF dopamine state. Importantly, this effect could not be attributed to motor facilitation. We conclude that deficits in incentivised decision-making are present in PD even in the absence of a clinical syndrome of apathy when rewards are low, but that dopamine acts to eliminate motivational deficits by promoting the allocation of effort.
Visual short-term memory deficits associated with GBA mutation and Parkinson's disease.
Individuals with mutation in the lysosomal enzyme glucocerebrosidase (GBA) gene are at significantly high risk of developing Parkinson's disease with cognitive deficit. We examined whether visual short-term memory impairments, long associated with patients with Parkinson's disease, are also present in GBA-positive individuals-both with and without Parkinson's disease. Precision of visual working memory was measured using a serial order task in which participants observed four bars, each of a different colour and orientation, presented sequentially at screen centre. Afterwards, they were asked to adjust a coloured probe bar's orientation to match the orientation of the bar of the same colour in the sequence. An additional attentional 'filtering' condition tested patients' ability to selectively encode one of the four bars while ignoring the others. A sensorimotor task using the same stimuli controlled for perceptual and motor factors. There was a significant deficit in memory precision in GBA-positive individuals-with or without Parkinson's disease-as well as GBA-negative patients with Parkinson's disease, compared to healthy controls. Worst recall was observed in GBA-positive cases with Parkinson's disease. Although all groups were impaired in visual short-term memory, there was a double dissociation between sources of error associated with GBA mutation and Parkinson's disease. The deficit observed in GBA-positive individuals, regardless of whether they had Parkinson's disease, was explained by a systematic increase in interference from features of other items in memory: misbinding errors. In contrast, impairments in patients with Parkinson's disease, regardless of GBA status, was explained by increased random responses. Individuals who were GBA-positive and also had Parkinson's disease suffered from both types of error, demonstrating the worst performance. These findings provide evidence for dissociable signature deficits within the domain of visual short-term memory associated with GBA mutation and with Parkinson's disease. Identification of the specific pattern of cognitive impairment in GBA mutation versus Parkinson's disease is potentially important as it might help to identify individuals at risk of developing Parkinson's disease.