Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

This paper presents methods to build histo-anatomically detailed individualized cardiac models. The models are based on high-resolution three-dimensional anatomical and/or diffusion tensor magnetic resonance images, combined with serial histological sectioning data, and are used to investigate individualized cardiac function. The current state of the art is reviewed, and its limitations are discussed. We assess the challenges associated with the generation of histo-anatomically representative individualized in silico models of the heart. The entire processing pipeline including image acquisition, image processing, mesh generation, model set-up and execution of computer simulations, and the underlying methods are described. The multifaceted challenges associated with these goals are highlighted, suitable solutions are proposed, and an important application of developed high-resolution structure-function models in elucidating the effect of individual structural heterogeneity upon wavefront dynamics is demonstrated.

Original publication




Journal article


Philos Trans A Math Phys Eng Sci

Publication Date





2257 - 2292


Computer Simulation, Heart, Humans, Models, Anatomic