Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ATP-sensitive potassium channels (K ATP channels) link cell metabolism to electrical activity by controlling the cell membrane potential. They participate in many physiological processes but have a particularly important role in systemic glucose homeostasis by regulating hormone secretion from pancreatic islet cells. Glucose-induced closure of K ATP channels is crucial for insulin secretion. Emerging data suggest that K ATP channels also play a key part in glucagon secretion, although precisely how they do so remains controversial. This Review highlights the role of K ATP channels in insulin and glucagon secretion. We discuss how K ATP channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations. The various hypotheses concerning the role of K ATP channels in glucagon release are also reviewed. Furthermore, we illustrate how mutations in K ATP channel genes can cause hyposecretion or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, and how defective metabolic regulation of the channel may underlie the hypoinsulinaemia and the hyperglucagonaemia that characterize type 2 diabetes mellitus. Finally, we outline how sulphonylureas, which inhibit K ATP channels, stimulate insulin secretion in patients with neonatal diabetes mellitus or type 2 diabetes mellitus, and suggest their potential use to target the glucagon secretory defects found in diabetes mellitus. © 2013 Macmillan Publishers Limited. All rights reserved.

Original publication

DOI

10.1038/nrendo.2013.166

Type

Journal article

Journal

Nature Reviews Endocrinology

Publication Date

01/11/2013

Volume

9

Pages

660 - 669