Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The DYX2 locus on chromosome 6p22.2 is the most replicated region of linkage to developmental dyslexia (DD). Two candidate genes within this region have recently been implicated in the disorder: KIAA0319 and DCDC2. Variants within DCDC2 have shown association with DD in a US and a German sample. However, when we genotyped these specific variants in two large, independent UK samples, we obtained only weak, inconsistent evidence for their involvement in DD. Having previously found evidence that variation in the KIAA0319 gene confers susceptibility to DD, we sought to refine this genetic association by genotyping 36 additional SNPs in the gene. Nine SNPs, predominantly clustered around the first exon, showed the most significant association with DD in one or both UK samples, including rs3212236 in the 5' flanking region (P = 0.00003) and rs761100 in intron 1 (P = 0.0004). We have thus refined the region of association with developmental dyslexia to putative regulatory sequences around the first exon of the KIAA0319 gene, supporting the presence of functional mutations that could affect gene expression. Our data also suggests a possible interaction between KIAA0319 and DCDC2, which requires further testing.

Original publication

DOI

10.1038/sj.mp.4001904

Type

Journal article

Journal

Mol Psychiatry

Publication Date

12/2006

Volume

11

Pages

1085 - 1061

Keywords

5' Untranslated Regions, Chromosomes, Human, Pair 6, Dyslexia, Exons, Female, Gene Expression Regulation, Humans, Male, Microtubule-Associated Proteins, Mutation, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Quantitative Trait Loci, United Kingdom