Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The PIWI-interacting RNA (piRNA) pathway prevents endogenous genomic parasites, i.e. transposable elements, from damaging the genetic material of animal gonadal cells. Specific regions in the genome, called piRNA clusters, are thought to define each species' piRNA repertoire and therefore its capacity to recognize and silence specific transposon families. The unistrand cluster flamenco (flam) is essential in the somatic compartment of the Drosophila ovary to restrict Gypsy-family transposons from infecting the neighbouring germ cells. Disruption of flam results in transposon de-repression and sterility, yet it remains unknown whether this silencing mechanism is present more widely. Here, we systematically characterise 119 Drosophila species and identify five additional flam-like clusters separated by up to 45 million years of evolution. Small RNA-sequencing validated these as bona-fide unistrand piRNA clusters expressed in somatic cells of the ovary, where they selectively target transposons of the Gypsy family. Together, our study provides compelling evidence of a widely conserved transposon silencing mechanism that co-evolved with virus-like Gypsy-family transposons.

Original publication

DOI

10.1038/s41467-023-42787-1

Type

Journal article

Journal

Nat Commun

Publication Date

13/11/2023

Volume

14

Keywords

Humans, Animals, Female, Drosophila, Piwi-Interacting RNA, Endogenous Retroviruses, Drosophila Proteins, RNA, Small Interfering, Argonaute Proteins, DNA Transposable Elements, Drosophila melanogaster