Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In animals, adaptation to changes in cellular oxygen levels is coordinated largely by 2-oxoglutarate-dependent prolyl-hydroxylase domain (PHD) dioxygenase family members, which regulate the stability of their hypoxia-inducible factor (HIF) substrates to promote expression of genes that adapt cells to hypoxia. Recently, 2-aminoethanethiol dioxygenase (ADO) was identified as a novel O2-sensing enzyme in animals. Through N-terminal cysteine dioxygenation and the N-degron pathway, ADO regulates the stability of a set of non-transcription factor substrates; the regulators of G-protein signaling 4, 5. and 16 and interleukin-32. Here, we set out to compare and contrast the in cellulo characteristics of ADO and PHD enzymes in an attempt to better understand their co-evolution in animals. We find that ADO operates to regulate the stability of its substrates rapidly and with similar O2-sensitivity to the PHD/HIF pathway. ADO appeared less sensitive to iron chelating agents or transition metal exposure than the PHD enzymes, possibly due to tighter catalytic-site Fe2+ coordination. Unlike the PHD/HIF pathway, the ADO/N-degron pathway was not subject to feedback by hypoxic induction of ADO, and induction of ADO substrates was well sustained in response to prolonged hypoxia. The data also reveal strong interactions between proteolytic regulation of targets by ADO and transcriptional induction of those targets, that shape integrated cellular responses to hypoxia. Collectively, our comparative analysis provides further insight into ADO/N-degron-mediated oxygen sensing and its integration into established mechanisms of oxygen homeostasis.

Original publication

DOI

10.1016/j.jbc.2023.105156

Type

Journal article

Journal

J Biol Chem

Publication Date

09/2023

Volume

299

Keywords

ADO, HIF, PHD, dioxygenase, hydroxylase, hypoxia, sensing, Animals, Cysteine, Hydroxylation, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Mammals, Oxygen, Procollagen-Proline Dioxygenase, Signal Transduction