Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Drosophila melanogaster displays social behaviors including courtship, mating, aggression, and group foraging. Recent studies employed social network analyses (SNAs) to show that D. melanogaster strains differ in their group behavior, suggesting that genes influence social network phenotypes. Aside from genes associated with sensory function, few studies address the genetic underpinnings of these networks. The foraging gene (for) is a well-established example of a pleiotropic gene that regulates multiple behavioral phenotypes and their plasticity. In D. melanogaster, there are two naturally occurring alleles of for called rover and sitter that differ in their larval and adult food-search behavior as well as other behavioral phenotypes. Here, we hypothesize that for affects behavioral elements required to form social networks and the social networks themselves. These effects are evident when we manipulate gene dosage. We found that flies of the rover and sitter strains exhibit differences in duration, frequency, and reciprocity of pairwise interactions, and they form social networks with differences in assortativity and global efficiency. Consistent with other adult phenotypes influenced by for, rover-sitter heterozygotes show intermediate patterns of dominance in many of these characteristics. Multiple generations of backcrossing a rover allele into a sitter strain showed that many but not all of these rover-sitter differences may be attributed to allelic variation at for. Our findings reveal the significant role that for plays in affecting social network properties and their behavioral elements in Drosophila melanogaster.

Original publication

DOI

10.1080/01677063.2021.1936517

Type

Journal article

Journal

J Neurogenet

Publication Date

09/2021

Volume

35

Pages

249 - 261

Keywords

Drosophila melanogaster, Social networks, for gene, foraging gene, genetics, social behavior, social interaction, social network analysis, social structure, Animals, Behavior, Animal, Cyclic GMP-Dependent Protein Kinases, Drosophila Proteins, Drosophila melanogaster, Social Behavior