Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

This study examined cardiac function and glucose metabolism in the 6-month-old db/db mouse, a model of type-2 diabetes. Cine magnetic resonance spectroscopy (MRI) was used to measure cardiac function in vivo. The db/db mice had decreased heart rates (17%, p<0.01) and stroke volumes (21%, p<0.05) that resulted in lower cardiac output (35%, p<0.01) than controls. Although there was no difference in ejection fraction between the 2 groups, db/db mouse hearts had a 35% lower maximum rate of ejection (p<0.01) than controls. In a protocol designed to assess maximal insulin-independent glucose uptake, hearts were isolated and perfused in Langendorff mode and subjected to 0.75 mL.min(-1).(g wet mass)(-1) low flow ischemia for 32 min. Glucose uptake during ischemia was 21% lower than in controls, and post-ischemic recovery of cardiac function was decreased by 30% in db/db mouse hearts (p<0.05). Total cardiac GLUT 4 protein was 56% lower (p<0.01) in db/db mice than in controls. In summary, the db/db mouse has abnormal left ventricular function in vivo, with impaired glucose uptake during ischemia, leading to increased myocardial damage.

Original publication




Journal article


Can J Physiol Pharmacol

Publication Date





289 - 294


3-Hydroxybutyric Acid, Animals, Blood Glucose, Cardiac Output, Diabetes Mellitus, Type 2, Fatty Acids, Glucose Transporter Type 4, Heart, Heart Rate, Insulin, Ischemia, Male, Mice, Mice, Inbred Strains, Myocardium, Stroke Volume, Triglycerides