Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

My Connections

Lineage Tracking

Environmental Niches

Noemi Picco

MSc, BSc


Postdoctoral Research Associate

Mathematical modelling of cortex evolution

I am a post-doctoral research associate with the St John's college Research Centre.

Building on my background in mathematics I have been developing a wide range of theoretical and computational tools that allow us to better understand a variety of biological systems.

My DPhil research project, in collaboration with the Integrated Mathematical Oncology department at the Moffitt Cancer Centre focussed on the role of tumour-stroma interactions in the emergence of environment-mediated drug resistance. I used population dynamics and spatially resolved models as a hypothesis-testing platform to facilitate communication with experimentalists, and to suggest further experimental routes.

I am part of an interdisciplinary effort between the Molnar group at DPAG and Prof. Maini and Dr. Woolley at the Wolfson Centre for Mathematical Biology supported by St John's College Research Centre to study cortex development and evolution. We want to understand the finely-tuned processes that take place during neurogenesis, and to map the divergent evolutionary trajectories that give rise to differences between species.

I am keen on contributing to the advancement of our understanding of the complexity of the human body and using mathematical and computational approaches to make functional predictions of biological processes. I enjoy working in close contact with experimentalists and I look forward to learn more about development and evolution.

Individual Cell-Based Model

False False

5

Downloads

Downloads

Models of Neurogenesis in Development

Neurogenesis Simulator

This is a graphic user interface allowing to select and calibrate the neurogenesis model, observing how the temporal dynamics vary when changing parameter values.

The user can select and compare strategies of neocortical development across different species.

In the long term we envisage the use of our neurogenesis model to map multiple species trajectories on the strategy space to highlight the paths of evolution.